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Abstract. Programmers of cryptographic applications written in C need
to avoid common mistakes such as sending private data over public chan-
nels or improperly ordering protocol steps. These secrecy, integrity, and
sequencing policies can be cumbersome to check with existing general-
purpose tools. We have developed a novel means of specifying and un-
covering violations of these policies that allows for a much lighter-weight
approach than previous tools. We embed the policy annotations in C’s
type system via a source-to-source translation and leverage existing C
compilers to check for policy violations, achieving high performance and
scalability. We show through case studies of recent cryptographic libraries
and applications that our work is able to express detailed policies for
large bodies of C code and can find subtle policy violations. We show
formal connections between the policy annotations and an information
flow type system and prove a noninterference guarantee of our design.
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1 Introduction

Programs often have complex data invariants and API usage policies written
in their documentation or comments. The ability to detect violations of these
invariants and policies is key to the correctness and security of programs. This
is particularly important for cryptographic protocols and libraries, which the
security of large systems depend on. There has been much interest in checking
implementations of cryptographic protocols [3, 12–15, 25, 28, 41]. These verifica-
tion systems, while comprehensive in their scope, require expert knowledge of
both the cryptographic protocols and the verification tool to be used effectively.

What remains missing is a lightweight, developer-friendly, compile-time tool
to help programmers identify errors that violate high-level policies on C pro-
grams. Particularly important policies are secrecy (e.g., sensitive data is not
given to untrusted functions), integrity (e.g., trusted data is not modified by un-
trusted functions), and API call sequencing (e.g., the ordering of cryptographic
protocol steps is maintained), all of which are information flow policies.

In this paper, we present a framework called FlowNotation where C pro-
grammers can add lightweight annotations to their programs to express policy



specifications. These policies are then automatically checked by C compiler, po-
tentially revealing policy violations in the implementation. Our annotations are
in the same family as type qualifiers (e.g. CQual [22, 37, 57]), where qualifiers
such as tainted and trusted are used to identify violations of integrity properties
of C programs; supplying tainted inputs to a function that requires a trusted
argument will cause a type error. Our work extends previous results to support
more complex and refined sequencing properties. Consider the following policy: a
data object is initially tainted, then it is sanitized using an encodeURI API, then
serialized using a serialize API, and finally written to disk using a fileWrite

API. Such API sequencing patterns are quite common, but cannot be straight-
forwardly captured using previous type qualifier systems. FlowNotation extends
type qualifiers to include a sequence of labels for specifying such policies. How-
ever, rather than implementing a new type system, FlowNotation translates
an annotated C program to another C program, which is then checked by a C
compiler for policy violations. The key insight is that qualified C types can be
translated to C structures whose fields are the original C types. Consequently,
we leverage performant C type checkers for checking large codebases.

To gain a formal understanding of the type of errors that we can uncover with
this system, we model the annotated types as information flow types, which aug-
ment ordinary types with security labels. We define a core language polC and
prove that its information flow type system enforces noninterference. The nov-
elty of polC ’s type system is that the security labels are sequences of secrecy and
integrity labels, specifying the path under which data can be relabeled. Relabel-
ing corresponds to declassification (marking secrets as public) and endorsement
(marking data from untrusted source as trusted). The type system ensures that
relabeling functions are called in the correct order. We also define µC, a core
imperative language with nominal types but without information flow labels in
order to model a fragment of C. We then formally define our translation algo-
rithm based on polC and µC and prove the algorithm correct. The formalism
not only makes explicit assumptions made by our algorithm, but also provides
a formal account of the properties being checked by the annotations.

To demonstrate the effectiveness of FlowNotation, we implement a prototype
for a subset of C and evaluate the prototype on several cryptographic libraries.
Our evaluation shows that we are able to check useful information flow policies
in a modular way and uncover subtle program flaws. Our full paper can be
found at [21] and the source code of FlowNotation can be downloaded from the
following URL: https://github.com/flownotation.

2 Overview and Motivating Examples

System overview. The left side of Figure 1 illustrates how FlowNotation

works. First, a programmer annotates policies. FlowNotation takes the anno-
tated program and produces a translated C program, which is then type-checked
using an off-the-shelf C compiler. A type error implies a policy violation. Once
free of violations, the unannotated, pre-translation program is used.



Checking secrecy policies. Suppose developers are working on a C project
that uses customers’ financial data. This project integrates a secure two-party
computation component that allows Alice and Bob to find out which of the two
is wealthier without revealing their wealth to the other or relying on a trusted
third party. Let us assume that the program obtains Alice’s balance using the
function get alice balance, then calls function wealthierA to see whether
Alice is wealthier than Bob. wealthierA’s implementation uses a library that
provides APIs for secure computation primitives.
int bankHandler() { int balA; balA = get alice balance(); ...

wealthierA(balA); }

Annotated C program

Translated C program

FlowNotation

OK

C Compiler

Type error

Annotated 𝜇C expression 

polC expression 

Translated 𝜇C expression

 

⟦ ⟧

Fig. 1. Overview of FlowNotation.

The variable balA contains Alice’s bal-
ance, so it should be handled with care;
in particular, the secrecy of balA is main-
tained. One way is to use information flow
types (e.g. [51]) to assign balA the type
(int AlicePriv), indicating that it is an
integer containing an AlicePriv type of
secret. In contrast, the type (int Public)
can be given to variables that do not con-
tain secrets. The type system then makes
sure that read and write operations involving balA are consistent with its secrecy
label. For instance, if a function postBalance(int Public), which is meant to
post the balance publicly, is called with balA as the argument, the type system
will reject this program for violating the secrecy policy.

FlowNotation’s annotations are information flow labels, each of which has a
secrecy component and an integrity component. Programmers can provide these
annotations above the declaration of balA to specify the secrecy policy as follows.

#requires AlicePriv:secrecy
int balA;

Here, #requires is a directive to help parse this annotation (in practice,
#pragma prefaces it). AlicePriv is a secrecy label. secrecy indicates only the
secrecy component is of concern and balA’s integrity component is automatically
assigned bot, the lowest integrity. This annotation can be used to check P1 below:

P1: balA should never be given as input to an untrusted function.
The corresponding information flow type of balA is int(AlicePriv, bot).

Trusted functions are those trusted by the programmer not to leak balA. Let us
assume our programmer trusts the following APIs. The API encodeA converts an
integer argument into a bit representation similar to what is used in Obliv-C [54]
for use with a garbled circuit. The API yao execA takes a pointer to a function
f and an argument for f, and runs f as a circuit with Yao’s protocol [52]. API
reveal gives the result to both parties. The following code is for Alice (Bob’s
program is symmetric, which we omit):
int compare(int a, int b) { return a > b; }
int wealthierA(int balA) {

int res = yao execA(&compare, encodeA(balA));
reveal(&res, ALICE); }



This program first encodes Alice’s balance, and then calls yao execA with
the comparison function and Alice’s encoded balance as arguments, and finally
calls reveal. The code as it stands will not type-check after being translated,
unless the programmer annotates the secure computation APIs.
#param AlicePriv:secrecy
int encodeA(int balA);
#param(2) AlicePriv:secrecy
int yao execA(void* compare, int balA);

These two annotations state that the functions must accept parameters with
the label AlicePriv. In the second annotation, #param(2) specifies that the
annotation should only apply to the second parameter. A violation of P1 will
be detected, when balA is given to a function that does not have this kind of
annotation; e.g. that is not allowed to accept AlicePriv-labeled data.
Checking integrity and sequencing policies. FlowNotation can also be
used to check for violations of the following, more refined, policy:

P2 : balA should be used by the encoding function
and then by the Yao protocol execution.

The annotation for balA is:
#requires AlicePriv:secrecy then EncodedBal:integrity
int balA;

The keyword then allows for the sequencing of labels. Corresponding changes
are made to the other annotations:
#param AlicePriv:secrecy
#return EncodedBal:integrity
int encodeA(int balA);
#param(2) EncodedBal:integrity
int yao execA(void* compare, int balA);

The encodeA function, as before, requires the argument to have the AlicePriv

secrecy label. In addition, the return value from encodeA will have the integrity
label EncodedBal, stating that it is endorsed by the encodeA function to be
properly encoded. The yao execA function requires the argument to have the
same integrity label. If only encodeA is annotated with EncodedBal at its return
value, the type system will check that an appropriate API call sequence (encodeA
followed by yao execA) is applied to the value stored in balA.

3 A Core Calculus for Staged Release

We formally define polC , which models annotated C programs that FlowNotation
takes as input. We show that polC ’s type system can enforce not only secrecy
and integrity policies, but also staged information release and data endorsement
policies. We prove that our type system enforces noninterference, from which
the property of staged information release is a corollary.

3.1 Syntax and Operational Semantics

The syntax of polC is summarized in Figure 2. We write ` to denote security
labels, which consist of a secrecy tag s and an integrity tag ι. We assume there



is a security lattice (S,vS) for secrecy tags and a security lattice (I,vI) for
integrity tags. The security lattice L = (L,v) is the product of the above two
lattices. The top element of the lattice is (>S ,⊥I) (abbreviated >), denoting
data that do not contain any secret and come from the most trusted source; and
the bottom element is (⊥S ,>I) (abbreviated ⊥), denoting data that contain the
most secretive information and come from the least trusted source.

A policy, denoted ρ is a sequence of labels specifying the precise sequence
of relabeling (declassification and endorsement) of the data. The example from
Section 2 uses the following policy: (AlicePrivate,⊥I) :: (⊥S ,EncodedBal) :: ⊥.
A policy always ends with either the top element, indicating no further relabeling
is allowed, or the bottom element, indicating arbitrary relabeling is allowed. For
our application domain, the labels are distinct points in the lattice that are not
connected by any partial order relations except > and ⊥.

Labels ` ::= (s, ι)
Policies ρ ::= ⊥ |> | ` :: ρ
1st order types b ::= int | ptr(s) |T
Simple sec. types t ::= b ρ | unit
Security types s ::= t | [pc](t→ t)ρ

Values v ::= x |n | () | f |T{v1, · · · , vk} | loc
Expressions e ::= v | e1bop e2 | v e | letx = e1 in e2

| v.i | if v1 then e2 else e3 | v := e
| new e | ∗v | reLab(`′::⊥ ← `::>) v

Fig. 2. Syntax of polC

A simple (first-order)
security type, denoted t,
is obtained by adding
policies to ordinary types.
Our core language sup-
ports integers, unit, point-
ers, and record types
(struct T {t1, · · · , tk} to
model C structs). Here T
is the defined name for a
record type. To simplify

our formalism, we assume that defined type T is always a record type named T .
Our information flow types use the policy ρ, rather than a single label `. The
meaning of an expression of type int ρ is that this expression is evaluated to an
integer and it induces a sequence of declassification (endorsement) operations
according to the sequence of labels specified by ρ. For instance, e : int H::L::⊥
means that e initially is of intH, then it can be given to a declassification function
to be downgraded to int L, the resulting expression can be further downgraded
to bottom. e : int H::L::> is similar except that the last expression cannot be
declassified further; i.e.. it stays at L security level. The annotated type for balA
in Section 2 can be similarly interpreted.

The unit type is inhabited by one element (), so it does not need a label.
A function type is of the form [pc](t1 → t2)ρ, where t1 is the argument’s type,
t2 is the return type, ρ is the security label of the function indicating who can
receive this function, and pc, called the program counter, is the security label
representing where this function can be called. A function f of type [L::⊥](t1 →
t2)H::⊥ cannot be called in an if branch that branches on a value with label H::⊥
and the function itself cannot be given to an attacker whose label is L::⊥.

Our expressions are reminiscent of A-normal forms (ANF): all elimination
forms use only values (e.g., v.i, instead of e.i). This not only simplifies our
proofs, but also the translation rules (presented in Section 4). The fragment of
C that is checked in our case studies is quite similar to this form. Values can



be variables, integers, unit, functions, records, and store locations. Since we are
modeling an imperative language, all functions are predefined, and stored in the
context Ψ . Expressions include function calls, if statements, let bindings, and
store operations. One special expression is the relabeling (declassification) oper-
ation, written reLab(`′::⊥ ← `::>) v. This operation changes the label of v from
`::> to `′::⊥. Such an expression should only appear in trusted declassification
functions. For our applications, we further restrict the relabeling to be between
two labels; from one ending with the top element to one ending with bottom
element. We will explain this later when we explain the typing rules.

polC ’s small step semantic rules are denoted Ψ ` σ / e −→ σ′ / e′, where Ψ
stores all the functions, σ maps locations to values and e is the expression to be
evaluated. The rules are standard and can be found in our full paper.

3.2 Typing Rules

The type system makes use of several typing contexts. We write D to denote
the context for all the type definitions. We only consider type definitions of
record (struct) types, written T 7→ struct T {t1, · · · , tk}. The typing context for
functions is denoted F . We distinguish two types of functions: ordinary functions,
and declassification/endorsement functions whose bodies are allowed to contain
relabeling operations, written f :(d&e)[pc]t1 → t2. F does not dictate the label
of a function f . Instead, the context in which f is used decides f ’s label.

Type def. ctx D ::= · |D,T 7→ struct T {t1, · · · , tk}
Func typing ctx F ::= · |F, f :[pc]t1 → t2 |F, f :(d&e)[pc]t1 → t2
Store Typing Σ ::= · |Σ, loc : s

We write Σ to denote the typing context for pointers. It maps a pointer to the
type of its content. Γ is the typing context for variables, and pc is the security
label representing the program counter. Typing judgment: D;F ;Σ;Γ ` v : t
types values, and D;F ;Σ;Γ ; pc ` e : t types expressions. The typing rules for
polC are summarized in the full paper.

Most of these typing rules are standard. These rules carefully arrange the
constraints on policies and the program counter so that the noninterference the-
orem can be proven. We explain the rule P-T-E-DE, which types the application
of a declassification/endorsement function and is unique to our system.

D;F ;Σ;Γ ` vf : (d&e)[pc′](b `1::> → b `2::⊥)ρf

D;F ;Σ;Γ ; pc ` ea : b ρ ρ = `1::`2::ρ′ ρf t pc v pc′

D;F ;Σ;Γ ; pc ` vf ea : b `2::ρ′
P-T-E-DE

We first define when a policy ρ1 is less strict than another, ρ2, written ρ1 v ρ2,
as the point-wise lifting of the label operation `1 v `2. When one policy reaches
its end, we use ⊥ v ρ or ρ v >. ⊥ represents a policy that can be arbitrarily
reclassified and thus is a subtype of any policy ρ. > is the strictest policy that
forbids any reclassification; so any policy is less strict than >.



The first premise checks that vf relabels data from `1 to `2. The second
premise checks that ea’s type matches that of the argument of vf ; further, ea’s
policy ρ has `1 and `2 as the first two labels, indicating that ea is currently
at security level `1 and the result of processing ea has label `2. Finally, the
return type of the function application has the tail of the policy ρ. The policy
of ea does not change; instead, the policy of the result of the relabeling function
inherits the tail of ea’s policy. Therefore, our type system is not enforcing type
states of variables as found in the Typestate system [48]. These declassification
and endorsement functions only rewrite one label, not a sequence of labels. This
allows us to have finer-grained control over the stages of relabeling.

D;F ;Σ;Γ ` v : b ρ pc v ρ′

D;F ;Σ;Γ ; pc ` reLab(ρ′ ⇐ ρ) v : b ρ′
P-T-E-Relabel

D;F ;Σ;Γ ; pc ` e : s′ s′ ≤ s
D;F ;Σ;Γ ; pc ` e : s

P-T-E-Sub

The typing rule for relabeling ensures that the pc label is lower than or equal to
the resulting label. We have the standard subtyping rule, which uses the same
notion of label subtyping introduced above.

3.3 Noninterference

We prove a noninterference theorem for polC ’s type system by adapting the
proof technique used in FlowML [45]. We extend our language to include pairs
of expressions and pairs of values to simulate two executions that differ in “high”
values. We only explain the key definitions for the theorem.

We first define equivalences of expressions in terms of an attacker’s obser-
vation. We assume that the attacker knows the program and can observe ex-
pressions at the security level `A. To be consistent, when `A is not > or ⊥, the
attacker’s policy is written `A::>. Intuitively, an expression of type b ρ should
not be visible to the attacker if existing declassification functions cannot relabel
data with label ρ down to `A::>. For instance, if ρ = H::L::⊥ and there is no
declassification function from H to L, then an attacker at L cannot distinguish
between two different integers v1 and v2 of type int ρ. On the other hand, if
there is a function f :d&e int H::> → L::⊥, then v1 and v2 are distinguishable
by the attacker. We define when a policy ρ is in H w.r.t. the attacker’s label,
the function context, and the relabeling operations (when values of type b ρ are
not observable to the attacker) as follows. ρ ∈ H if ρ cannot be rewritten to be
a policy that is lower or equal to the attackers’ policy. Here F ;R ` ρ ρ′ holds
when ρ = `1:: · · · ::`i::ρ′ and there is a sequence of relabeling operations in F and
R, using which ρ can be rewritten to ρ′. For instance, when `A = ⊥

F1 = encodeA : (d&e)int (AlicePrivate,⊥I) :: > → int (⊥S ,EncodedBal) :: ⊥
F2 = F1, yao execA : (d&e)int (⊥S ,EncodedBal) :: > → int ⊥
`A; ·; · ` (AlicePrivate,⊥I) ∈ H `A;F1; · ` (⊥S ,EncodedBal) ∈ H
`A;F2; · 0 (⊥S ,EncodedBal) ∈ H



Our noninterference theorem (defined below) states that given an expression
e that is observable by the attacker, and two equivalent substitutions δ1 and
δ2 for free variables in e (denoted δ1 ≈H δ2), and both eδ1 and eδ2 terminate,
then they must evaluate to the same value. In other words, the values of sub-
expressions that are not observable by the attacker do not influence the value of
observable expressions.

Theorem 1 (Noninterference) If D;F ;Γ ;⊥ ` e : s, e does not contain any
relabeling operations, given attacker’s label `, and substitution δ1, δ2 s.t. F `
δ1 ≈H δ2 : Γ , and `;F ; · ` labOf (s) /∈ H and Ψ ` ∅ / eδ1 −→∗ σ1 / v1 and
Ψ ` ∅ / eδ2 −→∗ σ2 / v2, then v1 = v2.

It follows from Noninterference that given D;F ;x:int `1:: · · · ::`n::⊥ ` e :
int `n::> where the attacker’s label is `n, the attacker can only gain knowledge
about the value for x if there is a sequence of declassification/endorsement func-
tions fis that remove label `i from the policy to reach `n::>. If `i 6v `i+1, the fis
have to be applied in the correct order, as dictated by the typing rules.

4 Embedding in A Nominal Type System

The type system of polC can encode interesting security policies and help pro-
grammers identify subtle bugs during development. However, implementing a
feature-rich language with polC ’s type system requires non-trivial effort. More-
over, only programmers who are willing to rewrite their codebase in this new
language can benefit from it. Rather than create a new language, FlowNotation
leverages C’s type system to enforce policies specified by polC ’s types.

The mapping between the concrete workflow of FlowNotation, polC and
µC, and the algorithms defined here is shown in Figure 1. We first define a sim-
ple imperative language µC with nominal types and annotations, which models
the fragment of C that FlowNotation works within. We show how the anno-
tated types and expressions can be mapped to types and expressions in polC
in Section 4.1. Then in Section 4.2, we show how to translate polC programs
back to µC. These two algorithms combined describe the core algorithm of
FlowNotation. We prove our translation correct in Section 4.3.

4.1 µC and Annotated µC

Expressions and the typing context names of µC are the same as those in polC .
The types in µC do not have information flow policies.

Expressions e ::= · · · | letx : β = e1 in e2 Typ. Annot. β ::= a | a1 → a2
Basic types π ::= T | int | unit | ptr(τ) Types τ ::= π |π1 → π2
Annotation a ::= π |T at ρ | int at ρ | ptr(β) at ρ
Annot. typedef Da ::= · |Da, T 7→ struct T{a1, · · · , ak}
Annot. Func. Fa ::= · |Fa, f : a1 → a2 |Fa, f : (d&e)a1 → a2

Programmers will provide policy annotations, denoted β, which are very similar
to labeled types s. We keep them separate, as programmers do not need to write



out the fully labeled types. A programmer can annotate defined record types
T at ρ, integers int at ρ, both the content and the pointer itself ptr(β) at ρ,
or the record type struct T{β1, · · · , βk}. The last case is used to annotate type
declarations in the contextD. We extend expressions with annotated expressions;
letx : a = e1 in e2. We assume that let bindings, type declarations, and function
types are the only places where programmers provide annotations.

4.2 Translating Annotated Programs to µC

Instead of defining an algorithm to translate an annotated µC program ea to
another µC program, we first define an algorithm that maps ea into a program
el in polC ; then an algorithm that translates el to a µC program.
Mapping from annotated µC to polC . This mapping helps make explicit
all the assumptions and necessary declassification and endorsement operations
needed to interpret those annotations as proper polC types and programs.

We write 〈〈β〉〉 to denote the mapping of unannotated and annotated µC types
to polC types. Unannotated types are given a special label U (unlabeled, defined
as (⊥S ,⊥I)); annotated types are translated as labeled types. All function types
are given the pc label ⊥, so the function body can be typed with few restrictions.
The mapping is straightforwardly defined over the structure of the annotated
types and we show a few rules below.

π ∈ {int, T}
〈〈π〉〉 = π U

π ∈ {int, T}
〈〈π at ρ〉〉 = π ρ

∀i ∈ [1, 2], 〈〈ai〉〉 = ti

〈〈a1 → a2〉〉 = [⊥](t1 → t2)

Expressions have two sets of mapping rules: Da;Fa;Γa; s ` 〈〈e〉〉 ⇒ le and
Da;Fa;Γa ` 〈〈v〉〉 ⇒ lv . The mapping rules use the annotated typing contexts:
Da, Fa, and Γa. The reading of the first judgement is that an annotated expres-
sion e is mapped to a labeled expression le given annotated typing contexts Da,
Fa, Γa, and e’s polC type s. The second judgment is similar, except that it only
applies to values and the type of v is not given. Here le and lv are expressions
with additional type annotations of form @s to ease the translation process from
polC to µC. For instance, n@int U means that n is an integer and it is supposed
to have the type int U . This way, we can give the same integer different types,
depending on the context under which they are used: n@int U and n@int ρ are
translated into different terms.

A value is mapped to itself with its type annotated. For example, integers are
given int U type, since they are unlabeled. Selected expression mapping rules
are listed in Figure 3. The tricky part is mapping expressions whose typing rules
in polC require label comparison and join operations. Obviously, the µC type
system cannot enforce such complex rules. Instead, we add explicit relabeling
to certain parts of the expression to ensure that the types of the translated µC
program enforce the same property as types in the corresponding polC program.

There are two rules for record field access: one without explicit relabeling (L-
Field) and one with (L-Field-U). Rule L-Field applies when all the elements
in the record have the same label as the record itself. Rule L-Field-U explicitly
relabels the record first, so the record type changes from T ρ to T ⊥, resulting



Da;Fa;Γa ` 〈〈v〉〉 ⇒ lv tpOf (lv) = T ρ
Da(T ) = (struct T{β1, · · · , βn}) ∀i ∈ [1, n], ρ = labOf (〈〈βi〉〉)

Da;Fa;Γa; t ` 〈〈v.i〉〉 ⇒ lv .i
L-Field-U

Da;Fa;Γa ` 〈〈v〉〉 ⇒ lv tpOf (lv) = T ρ
Da(T ) = (struct T{β1, · · · , βn}) ∃i ∈ [1, n], ρ 6= labOf (〈〈βi〉〉)

Da;Fa;Γa; t ` 〈〈v.i〉〉 ⇒ let y : T ⊥ = reLab(⊥ ⇐ ρ) lv in (y@T ⊥).i
L-Field

Da;Fa;Γa ` 〈〈v1〉〉 ⇒ lv1 tpOf (lv1) = int ρ
Da;Fa;Γa; t ` 〈〈e2〉〉 ⇒ le2 Da;Fa;Γa; t ` 〈〈e3〉〉 ⇒ le3

Da;Fa;Γa; t ` 〈〈if v1 then e2 else e3〉〉
⇒ let x : int ⊥ = (reLab(⊥ ⇐ ρ) lv1) in if x@int ⊥ then le2 else le3

L-If

Fig. 3. Mapping of expressions (selected rules)

in the field access having the same label as the element. This is because when
the labels of the elements are not the same as the record, the typing rule P-T-
E-Field will join the type of the field with the label of the record. However,
this involves label operations, which µC’s type system cannot handle. L-deref
and L-assign are similar. The mapping of if statements (L-If) relabels the
conditional v1 to have int ⊥ type, so the branches are typed under the same
program counter as the if expression. We write reLab(⊥ ⇐ ρ) as a short hand
for a sequence of relabeling operations reLab(` :: ⊥ ⇐ `n::>) · · · reLab(`i::⊥ ⇐
`i−1::>) · · · reLab(`2::⊥ ⇐ `1::>) where ρ = `1:: · · · ::`n::` and ` is either > or ⊥.
The implications of relabeling operations are discussed at the end of this section.
Translation from polC to µC. The translation of types is shown below.
It returns a µC type and a set of new type definitions. We use a function
genName(t, ρ) to deterministically generate a string based on t and ρ as the
identifier for a record type. It can simply be the concatenation of the string rep-
resentation of t and ρ, which is indeed what we implemented for C (Section 5).

ρ ∈ {U ,⊥}
Jint ρKD = (int, ·)

ρ /∈ {U ,⊥} T = genName(int, ρ)

Jint ρKD = (T, T 7→ struct T {int})

ρ /∈ {U ,⊥} T ′ = genName(T, ρ) T 7→ struct T {τ1, · · · , τn} ∈ D
JT ρKD = (T ′, T ′ 7→ struct T ′ {τ1, · · · , τn})

We distinguish between a type with a label that is U or ⊥ and a meaningful
label. The translation of the type b U is simply b. This is because b U is mapped
from an unannotated type b to begin with, so the translation returns its original
type. Similarly b ⊥ is generated by our relabeling operations during the mapping
process, and should be translated to its original type b. A type annotated with a
meaningful policy ρ is translated into a record type to take advantage of nominal
typing. The translation also returns the new type definition. This would also
prevent label subtyping based on the security lattice. However, this is acceptable
given our application domain because the labels provided by programmers are



distinct points in the lattice that are not connected by any partial order relations
except the > and ⊥ elements. Record types are translated to record types and the
fields of the labeled record type T ρ have the same type as those for T , stored
in the translated context D. This works because we assume that all labeled
instances of the record type T (i.e., all T ρ) share the same definition.

Expression translation recursively translates the sub-expressions. The µC
type system does not have complex label checking, so rule T-App-De has to
insert label conversions. The argument label is cast from `1 :: `2 :: ρ′ to `1 :: >,
as required by f , and the result of the function is cast from `2 :: ⊥ to `2 :: ρ′.

tpOf (lvf ) = (d&e)[pc](t1 → t2)ρf

Jlvf KD = (vf , Df ) tpOf (lva) = b ρ
ρ = `1::`2::ρ′ JreLab(`1::> ⇐ ρ)lvaKD = (e′, D1)

JreLab(`2::ρ′ ⇐ `2::⊥)(z@b `2::⊥)KD = (e′′, D2)
Jt1KD = (τ1, D3) Jt2KD = (τ2, D4)

Jlvf lvaKD = (let y : τ1 = e′ in let z : τ2 = vf y
in e′′, Df ∪D1 ∪D2 ∪D3 ∪D4)

T-App-DE

These operations are different from the ones inserted during the mapping process
because they only exist to help µC simulate the E-App-De typing rule in polC ,
but do not really have declassification or endorsement effects. The relabeling
operations are translated to record operations, as shown in Figure 4 .

Rule T-Relab-N1 relabels a value with a labeled type. The translated ex-
pression is a reassembled record using the fields of the original record. Rule T-
Relab-N2 relabels an expression with a U and ⊥ label to a meaningful label. In
this case, the translated expression is a record. Rule T-Relab-N3 translates an
expression relabeled from a meaningful label to a U or ⊥ label to a projection
of the record. The next rule, T-Relab-Same, does not change the value itself,
because we are just relabeling between U and ⊥ labels. The final relabeling
rule, T-Relab-Struct, deals with records. In this case, we simply return the
reassembled record because record types that only differ in labels have the same
types for the fields.

4.3 Correctness

We prove a correctness theorem, which states that if our translated nominal type
system declares an expression e well-typed, then the labeled expression el, where
e is translated from, is well-typed under polC ’s type system. Formally:

Theorem 2 (Translation Soundness (Typing)) If Da;Fa;Γa; s ` 〈〈e〉〉 =
le, 〈〈Da〉〉 = Dl, 〈〈Fa〉〉 = Fl, 〈〈Γa〉〉 = Γl, JDlK = D, JΓlKD = (Γ,D1), JFlKD =
(F,D2), JleKD = (e′, D3), and D ∪ D1 ∪ D2 ∪ D3;F ; ·;Γ ` e′ : τ implies
Dl;Fl; ·;Γl ` tmOf (le) : s and JsK = (τ, )

Here, tmOf (le) denotes an expression that is the same as le, with labels (e.g.,
@int U ) removed. The proof is by induction over the derivation of Da;Fa;Γa; s `



tpOf (lvf ) = (d&e)[pc](t1 → t2)ρf

Jlvf KD = (vf , Df ) tpOf (lva) = b ρ
ρ = `1 :: `2 :: ρ′ JreLab(`1 :: > ⇐ ρ)lvaKD = (e′, D1)

JreLab(`2 :: ρ′ ⇐ `2 :: ⊥)(z@b `2 :: ⊥)KD = (e′′, D2)
Jt1KD = (τ1, D3) Jt2KD = (τ2, D4)

Jlvf lvaKD = (let y : τ1 = e′ in let z : τ2 = vf y
in e′′, Df ∪D1 ∪D2 ∪D3 ∪D4)

T-App-DE

JlvKD = (v,D1) tpOf (lv) = b ρ (b is not a struct type)
ρ′ /∈ {⊥,U } ρ /∈ {⊥,U } Jb ρ′KD = (T,D2)

JreLab(ρ′ ⇐ ρ)lvKD = (let x = v.1 in (T ){x}, D1 ∪D2)
T-ReLab-N1

JlvKD = (v,D1) tpOf (lv) = b ρ (b is not a struct type)
ρ′ /∈ {⊥,U } ρ ∈ {⊥,U } Jb ρ′KD = (T,D2)

JreLab(ρ′ ⇐ ρ)lvKD = ((T ){v}, D1 ∪D2)
T-ReLab-N2

JlvKD = (v,D1) tpOf (lv) = b ρ
b is not a struct type ρ /∈ {⊥,U } ρ′ ∈ {⊥,U }

JreLab(ρ′ ⇐ ρ)lvKD = (v.1D1)
T-ReLab-N3

JlvKD = (v,D1) labOf (lv) = b ρ ρ, ρ′ ∈ {U ,⊥}
JreLab(ρ′ ⇐ ρ)lvKD = (v,D1)

T-ReLab-same

ρ /∈ {⊥,U } or ρ′ /∈ {⊥,U }
tpOf (lv) = T ρ JT ρ′KD = (T ′, D1) JlvKD = (v,D2)

JreLab(ρ′ ⇐ ρ)lvKD = let x1 = v.1 in · · · let xn = v.n
in (T ′){x1, · · · , xn}, D1 ∪D2)

T-ReLab-Struct

Fig. 4. Selected Relabeling Rules

〈〈e〉〉 ⇒ le. It is not hard to see that the translated program has the same behavior
as the original program, as they only differ in that the translated program has
many indirect record constructions and field accesses.

Relabeling Precision. It is clear from the mapping algorithm that a number of
powerful relabeling operations are added. In all cases (except the if statement)
we could do better by not relabeling all the way to bottom, but to the label
of the sub-expressions. However, that would require a heavy-weight translation
algorithm that essentially does full type-checking.

Implicit Flows. The security guarantees of programs that require relabeling
operations to be inserted are weakened in the sense that in addition to the spe-
cial declassification and endorsement functions, these relabeling operations allow
additional observation by the attacker. This means that the resulting program
can implicitly leak information via branches, de-referencing, and record field ac-
cess. However, for our application domain we aim to check simple data usage



and function call patterns which, as seen in our case studies, manifest errors with
explicit flows. These policy violations are still detected if we don’t have recursive
types (See the full paper for explanations and our case studies are not affected).

5 Implementation

We explain how the annotations and translation algorithms of FlowNotation

are implemented for C.
Translation of annotations for simple types. Utilizing C’s nominal typing
via the typedef mechanism is key to realizing polC type system within the
bounds of C’s type system. The declaration of the polC type t ρ in C will be
typedef struct {t d;} ρ@t;. Here ρ@t is a string representing the type t ρ
and it is simply a concatenation of the string representation of the policy ρ
and the type t. Consider the annotated code snippet. #requires l1:secrecy
then l2:secrecy int x; In polC , the type of x is int (l1,⊥I) :: (l2,⊥I) :: ⊥.
The generated C typedef is typedef struct {int d;} l1S l2S int; This
definition contains the original type, which allows access to the original data
stored in x in the transformed program.
Structures and unions. We allow programmers to annotate structures in two
ways: an instance of a structure can be annotated with a particular policy, or
individual fields of an instance of a structure can be given annotations. The
names of structures hold a particular significance within C since they are nominal
types, and thus, they need to be properly handled. Unions are treated in a
parallel manner, so we omit the details.

A policy on an instance of a structure is annotated and translated following
the same formula as annotations on simple C types. Suppose we have the follow-
ing annotation and code: #requires l1:secrecy then l2:secrecy struct
foo x;. FlowNotation will produce the following generated type definition:
typedef struct {struct foo d;} l1S l2S foo; This is different from the

algorithm in Section 4, where structures are not nested and annotations are
applied to structure definitions rather than instances. This is done in the imple-
mentation because the definition of foo might be external and therefore may not
be known to the translation algorithm, so we simply nest the entire structure.

Finally, we explain how member accesses are handled. Suppose a struct foo
contains members f1 and f2, and an annotation of policy p has been placed on
member f1, but no annotation has been placed on member f2. The generated
type definition for the structure is as follows: typedef struct { p int f1;

foo d; } p foo;. Assume x has type p foo. Access to f1 is still x.f1, since
there is a copy of it in x. Access to f2 is rewritten to x.d.f2. The field ini-
tialization is rewritten similarly. foo x={.f1=1,.f2=2}; is transformed to this:
foo x={.f1=1,.d={.f2=2}};.
Pointers. We provide limited support for pointers. Here is an example of how
annotations on pointers are handled: #requires AlicePriv:secrecy int*
x; The translated code is below; a type definition of struct AlivePrivS int

is generated: AlicePrivS int* x;. The following function can receive x as an



argument because the annotation for its parameter matches that of x: #param
AlicePriv:secrecy int f(int* x){...}.

The annotation for pointers only annotates the content of the pointer. Even
though polC allows policies on the pointer themselves, we did not implement that
feature. We also do not support pointer arithmetic, which is difficult to handle
for many static analysis tools, especially lightweight ones like ours. However,
our system will flag aliasing of pointers across mismatched annotated types.
Our system will also flag pointer arithmetic operations on annotated types as
errors. Programmers can encapsulate those operations in trusted functions and
annotate them to avoid such errors.

Typecasts. The C type system permits typecasts, allowing one to redefine the
type of a variable in unsound ways. Casting of non-pointer annotated types will
be flagged as an error by FlowNotation. This is because our types are realized as
C structures; type checkers do not allow arbitrary casting of structures. However,
our tool cannot catch typecasts made on annotated pointers; a policy on a pointer
will be lost if a typecast is performed.

Limitations. As previously mentioned, we do not handle pointer arithmetic.
We only provide limited support for function pointers. We do not support C’s
builtin operators, such as the unary ++. We do not support typecasts on pointers,
nor can we flag violations due to implicit void pointer conversion. We provide
partial support for variadic functions. Finally, we do not support using #return
with a function that has a void return type. These are careful design choices
we made so our tool is lightweight and remains practical; we emphasize that our
tool is not meant for verification. Further explanations can be found in our full
paper, and limitations of our type system can be found in Section 4.3.

6 Case Studies

We evaluate the effectiveness of FlowNotation at discovering violations of se-
crecy, integrity, and sequencing API usage policies on several open-source crypto-
graphic libraries. Our results are summarized in Figure 5. We examine: Obliv-C,
a compiler for dialect of C directed at secure computation [54,55]; SCDtoObliv,
a set of floating point circuits synthesized into C code [56]; the Absentminded
Crypto Kit, a library of Secure Computation protocols and primitives [33, 34];
Secure Mux, a secure multiplexer application [59]; the Pool Framework, a se-
cure computation memory management library [58, 59]; Pantaloons RSA, the
top GitHub result for an RSA implementation in C [43]; MiniAES, an AES
multiparty computation implementation [30, 31]; Bellare-Micali OT, an imple-
mentation of the Bellare-Micali oblivious transfer protocol [6]; Kerberos ASN.1
Encoder, the ASN.1 encoder module of Kerberos [1]; Gnuk OpenPGP-do, a por-
tion of the OpenPGP module from gnuk [53]; Tiny SHA3, a reference implemen-
tation of SHA3 [46]. We determine application-specific policies and implement
them with our annotations. Representative cases are explained next; additional
cases are in the full paper.



Fig. 5. Evaluation Results. #Pol is the number of policies. Sec, int, seq are secrecy,
integrity, and sequencing policies. LoA, LoC are lines of annotations, code. RT(s) is
runtime in seconds.

Library # Pol Sec Int Seq LoA ∼ LoC Issues RT(s)

Obliv-C Library 2 1 1 0 11 80 0 0.04
SCDtoObliv FP Circuits 4 4 0 0 10 43,000 1 5.55
ACK Oqueue 7 7 7 2 19 700 0 0.17
Secure Mux Application 4 3 4 0 11 150 0 0.06
Pool Framework 4 2 4 0 8 500 1 0.16
Pantaloons RSA 5 2 3 0 12 300 1 0.11
MiniAES 9 4 4 1 13 2000 0 0.08
Bellare-Micali OT 5 3 2 0 12 100 2 0.05
Kerberos ASN.1 Encoder 2 2 0 1 8 300 0 0.12
Gnuk OpenPGP-do 5 0 5 1 11 250 1 0.10
Tiny SHA3 3 3 0 1 6 200 0 0.10

SCDtoObliv Floating Point Circuits. First, we show that FlowNotation

can be used to discover flaws in large, automatically generated segments of code
that would be very difficult for a programmer to manually analyze.

SCDtoObliv [56] synthesizes floating point circuit in C via calls to boolean
gate primitives implemented in C. While this approach produces performant
floating point circuits for secure computation applications, the resulting circuit
files are hard to interpret and debug. The smallest of these generated circuit files
is around 4000 lines of C code while the largest is over 14,000 lines. We annotate
particular wires based on the circuit function to check that particular invariants
such as which bits should be used in the output and which bits should be flipped
are maintained.

FlowNotation uncovered a flaw in the subtraction circuit. The Obliv-C sub-
traction circuit actually uses an addition circuit to compute A + (−B). The
function that does the sign bit flipping, obliv c flipBit, is annotated so
that it can only accept an input with the needsFlipping label as follows.

#param needsFlipping:secrecy
void obliv c flipBit(OblivBit* src)

Our tool reports an error; rather than the sign bit of the second operand
being given to obliv c flipBit the sign bit of the first operand was given
to obliv c flipBit. Instead of computing A + (−B) the circuit computes
(−A) + B; the result of evaluating the circuit is negated with respect to the
correct answer.

Gnuk OpenPGP-DO. The last case study shows that FlowNotation can un-
cover a known null-pointer dereferencing bug and another potential bug in the
gnuk OpenPGP-DO file, which handles OpenPGP Smart Card Data Objects
(DO). We present the latter in the full paper.

The function w kdf handles the reading or writing of DOs that support en-
cryption via a Key Derivation Function (KDF) in the OpenPGP-DO file.
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Fig. 6. Processing Time vs Number of Annotations and Time Per Processing Stage

static int rw kdf (uint16 t tag, int with tag,
const uint8 t *data, int len, int is write)

If the data is being read, it is copied to a buffer via the function copy do 1:
static void copy do 1(uint16 t tag, const uint8 t *do data,

int with tag). One invariant is that the do data pointer must point to a valid
segment of data; it must not be null. We provide the following annotation:

#param(2) check−valid−ptr:integrity
static void copy do 1(uint16 t tag, const uint8 t *do data, int

with tag)

This annotation states that the second parameter will only be accepted
if it has been endorsed by a function that returns data annotated with the
check valid ptr label. We provide such a function and rewrite all nullity checks
to use it.

#return check valid ptr:integrity
const uint8 t *check do ptr(const uint8 t *do ptr)

Returning back to the rw kdf function, when data is being read, the follow-
ing call of copy do 1 occurs: copy do 1(tag, do ptr[NR DO KDF], with tag);

The issue is copy do 1 is annotated to require a null-pointer check for parameter
two, but that check was not performed.

Performance Evaluation. We evaluate the performance of FlowNotation on
synthetically generated C programs and annotations. To elicit worse-case behav-
ior, the generated annotations are predominantly sequencing annotations con-
structed from a set of templates representative of common API patterns from
our case studies.

We evaluate how the runtime of FlowNotation is affected by the program
size and the number of annotations (figure 6). We evaluate the runtime of four
C programs, with 500, 1000, 2000, and 4000 lines of code respectively. For each
program, we increase the number of annotations, up to 128. FlowNotation is
efficient: all experiments finish within 4 seconds. FlowNotation is intended to be
run on individual modules (libraries) that rarely exceed a couple thousand lines
of code unless they are automatically generated, like the SCDtoObliv circuit file
(14,000 LoC). Even then, it finishes within 6 seconds.



To better understand how each component of FlowNotation contributes to
the processing time, we profile execution time for each part. The results are
summarized in Figure 6, which shows a cross-section of Figure 6 with only the
samples with 128 annotations. The four stages of FlowNotation are: “Parse
Files,” where annotations are retreived; “Generate Header,” where the header
file with definitions for the transformed types is generated; “Build AST,” where
the C parsing library, pycparser [7] builds an AST; “Transform,” where the
implementation of the translation algorithm of FlowNotation runs. The majority
of the overhead is due to the C parsing library we use.

7 Related Work

Tools for Analyzing C Programs. Many vulnerabilities stem from poorly
written C programs. As a result, many C program analysis tools have been
built. Several C model checkers (e.g. [4, 10, 11, 24, 38]) and program analysis
tools [20, 27, 29, 42] are open source and readily downloadable. Our policies can
be encoded as state machines and checked by some of the tools mentioned above,
which are general purpose and more powerful than ours but are not tuned for
analyzing API usage patterns like ours.

Closest to our work is CQual [36]. Both theoretical foundations and practical
applications of type qualifiers have been investigated [17,22,35,37,57]. Our anno-
tations are type qualifiers and our work and prior work on type qualifiers share
the goal of producing a lightweight tool to check simple secrecy and integrity
properties. We additionally support sequencing of atomic qualifiers, which is a
novel contribution. Both our’s and prior work do not handle implicit flows. We
prove noninterference of our core calculus, which other systems did not. An-
other difference is that CQual relies on a custom type checker, while our policies
are checked using C’s type system. Finally, CQual supports qualifier inference,
which can reduce the annotation burden on programmers. We do not have gen-
eral qualifier inference because we rely on existing C compiler’s type checkers.
Information Flow Type Systems. Information flow type systems is a well-
studied field. Several projects have extended existing languages to include in-
formation flow types (e.g., [44, 45]). Sabelfeld et al. provided a comprehensive
summary in their survey paper [47]. Most information flow type systems do not
deal with declassification. At most, they will include a “declassify” primitive
to allow information downgrade, similar to our relabel operations. However, we
have not seen work where the sequence of labels is part of the information flow
type like ours, except for JRIF [39]. As a result, we are able to prove a noninter-
ference theorem that implies API sequencing. JRIF uses finite state automata
to enforce sequencing policies, which can entail a large runtime overhead.

Other projects that target enforcement of sequencing policies similar to those
we have presented rely on runtime monitoring, not types [5, 9, 18,19,23,50].
Linear Types and Typestate. Our sequencing policies are tangentially re-
lated to other type systems that aim to enforce API contracts. This line of work
includes typestate and linear types [2, 32, 48]. The idea is that by using types-



tate/linear types one can model and check behaviors such as files being opened
and closed in a balanced manner [2]. However, unlike in typestate the types on
variables don’t change in our system; when a part of a policy is fulfilled there is
a new variable that “takes on” the rest of the policy.
Cryptographic Protocol Verification. Several projects have proposed lan-
guages to make verification of cryptographic programs more feasible: Jasmine,
Cryptol, Vale, Dafny, F*, and Idris [3,15,16,40,41,49], to name a few. There are
also general tools for verifying cryptographic protocols [8,12–14,25,26,28]. These
languages and tools are general purpose and more powerful than ours. However,
none of these tools directly support checking properties of C implementations
of cryptographic libraries like we do. Bhargavan et al.’s work uses refinement
types to achieve similar goals as ours [13]. The annotated types can be viewed
as refinement types: {x : τ | ρ}, where the policy is encoded as a predicate. Their
system is more powerful, however it only supports F# code.
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