
NODEMEDIC-FINE: Automatic Detection and Exploit Synthesis
for Node.js Vulnerabilities

Darion Cassel
Carnegie Mellon University∗

Nuno Sabino
Carnegie Mellon University

Ruben Martins
Carnegie Mellon University

Limin Jia
Carnegie Mellon University

Abstract
The Node.js ecosystem comprises millions of packages writ-
ten in JavaScript. Many packages suffer from vulnerabilities
such as arbitrary code execution (ACE) and arbitrary com-
mand injection (ACI). Prior work has developed automated
tools based on dynamic taint tracking to detect potential vul-
nerabilities, and to synthesize proof-of-concept exploits that
confirm them, with limited success.

One challenge these tools face is that expected inputs to
package APIs often have varied types and object structure.
Failure to call these APIs with inputs of the correct type and
with specific fields leads to unsuccessful exploit generation
and missed vulnerabilities. Generating inputs that can success-
fully deliver the desired exploit payload despite manipulation
performed by the package is also difficult.

To address these challenges, we use a fuzzer to generate
inputs to explore more execution paths during dynamic taint
analysis. We leverage information generated by the taint anal-
ysis to infer the types and structure of the inputs, which are
then used by the exploit synthesis engine to guide exploit
generation. We implement NODEMEDIC-FINE and evaluate
it on 33,011 npm packages that contain calls to ACE and ACI
sinks. Our tool finds 1966 potential flows and automatically
synthesized exploits to confirm 622 of them.

1 Introduction

The Node.js ecosystem is vast and ever-growing, with mil-
lions of JavaScript packages available through the package
management system npm alone [2]. Each package serves as a
building block for developers to create their own applications.
Each package typically has a set of public APIs, functions that
can be called from other packages, called entry points. As its
popularity increases, the Node.js ecosystem has become an
attractive target of attackers [13, 18, 21, 33, 45, 51, 54]. Prior
work has shown that many packages in the Node.js ecosystem
contain security vulnerabilities [17, 23, 24, 25, 27, 28, 30, 43,

∗Work done prior to joining Amazon Web Services.

44, 50]. The most serious vulnerabilities are Arbitrary Com-
mand Injection (ACI) and Arbitrary Code Execution (ACE)
vulnerabilities, which allow an attacker to execute code or
commands on the system that runs the application [10, 11].

Prior work has developed automated analyses to detect po-
tential ACI and ACE vulnerabilities in JavaScript programs [7,
8, 15, 16, 17, 24, 26, 35, 43, 44, 46] and to synthesize proof-
of-concept exploits to confirm them [7, 8, 15, 16, 26, 35, 46].
Several of these tools implement dynamic taint tracking to
identify ACI and ACE vulnerabilities at run time. At a high
level, dynamic taint analyses aim to find a flow of information
from attacker-controlled inputs to a package’s entry point to
sensitive APIs such as eval, called sinks.

Dynamic analysis alone, without fuzzing the inputs or lever-
aging path conditions, can only observe one execution path of
the program, leading to missed vulnerabilities. Another draw-
back of such an analysis is false positives [8, 17, 24]; the tool
may report many potentially dangerous flows, but not indicate
which can truly be exploited. To reduce the false-positive
rates, prior work has explored using synthesis techniques to
automatically generate proof-of-concept exploits for Node.js
packages: NODEMEDIC was able to automatically confirm
102 ACI and 6 ACE flows in a sample of 10,000 packages.
However, their approach has several limitations leading to
failure to confirm 31 ACI flows and 16 ACI flows [8].

One fundamental challenge is that inputs to package APIs
often have varied types and structures. If the dynamic taint
analysis does not call these APIs with inputs of the correct
type, with specific fields, it may miss vulnerabilities. Generat-
ing exploits implicates similar challenges. A second challenge
to generating viable proof-of-concept exploits is that the al-
gorithm has to take into consideration operations performed
on the tainted inputs before they reach the sinks. A third
challenge, particularly for generating exploits for ACE vul-
nerabilities, is that they must be syntactic and semantically
valid JavaScript in order to deliver the payload.

To address these challenges, we propose to leverage run-
time information generated from dynamic taint tracking to
(1) help a fuzzer to generate nontrivial inputs to explore more

1

execution paths during dynamic taint analysis and (2) to infer
the type and structure of the inputs, which are then used by the
exploit synthesis engine to guide the generation of exploits. In
addition to type and structure information, we also propose to
incorporate the semantics of operations performed on tainted
data in the synthesis algorithm to increase the success rate
of exploit generation. Prior work only took the initial steps
in this direction and missed opportunities such as modeling
implicit type coercion and JavaScript built-in string opera-
tions. Finally, we explore generating valid completions of
JavaScript code string prefixes to synthesize ACE exploits.

We implement NODEMEDIC-FINE (Fuzzer, INference, Enu-
merator) for automatically detecting ACE and ACI flows and
synthesizing proof-of-concept exploits to confirm them. We
build on NODEMEDIC’s dynamic taint analysis and naive
exploit synthesis algorithm. First, we implement a novel type-
and structure-aware fuzzer to explore the Node.js package.
Second, we improve the synthesis algorithm by incorporating
additional constraints based on effects of JavaScript opera-
tions and input types and structure. Finally, we implement
an Enumerator component to synthesize valid completions of
JavaScript code. These methodologies can be applied to any
dynamic taint analysis engine.

We evaluate NODEMEDIC-FINE on 33,011 npm pack-
ages in active use that contain calls to ACE and ACI sinks.
NODEMEDIC-FINE finds 1966 potential flows and automati-
cally synthesizes exploits that confirm 622 flows. The type-
and structure-aware fuzzer found 2.6x the number of poten-
tial flows that NODEMEDIC uncovered. The new synthesis
component were pivotal in the confirmation of an additional
28 challenging confirmed flows, for a total 2.5x confirmed
flows compared to NODEMEDIC. We plan to open source our
tool upon publication.

Responsible disclosure. We follow a coordinated vulnera-
bility disclosure process (i.e., responsible disclosure) [9] for
the vulnerabilities discovered in our evaluation. We are in the
process of triaging and responsibly disclosing our confirmed
flows. Thus far, 1 high severity CVE [1] has been assigned.

2 Background

We show an example ACI vulnerability and briefly review
NODEMEDIC’s dynamic taint analysis algorithm and output
provenance graph, which NODEMEDIC-FINE takes as input.

Motivating example. The code snippet of a function with a
confirmed ACI vulnerability is shown in Figure 1. The encom-
passing package exports the execute function, making it public
to other packages. This function is a wrapper around rsync, and
it looks for several attributes in the first argument param. If param

has a flags attribute, the package concatenates its value to the
final command that is run using exec (lines 6-7). This package
has an ACI vulnerability when an attacker is able to con-
trol the first argument of execute. For instance, if an attacker

1 module.exports = {
2 execute: function(params , callback , error) {
3 var exec = require(’child_process’).exec;
4 var cmd = ’rsync’;
5 if(params.flags !== undefined) {
6 cmd += ’ -’ + params.flags;
7 }
8 if(params.options !== undefined) {
9 cmd += ’ ’ + params.options;

10 }
11 if(params.source !== undefined) {
12 cmd += ’ ’ + params.source;
13 }
14 if(params.destination !== undefined) {
15 cmd += ’ ’ + params.destination;
16 } else {
17 console.log(’Err: ...’);
18 }
19 exec(cmd, function(error , stdout , stderr) {
20 if(error !== null) { error(error);}
21 else { callback(stdout); }});
22 }};

Figure 1: An example ACI vulnerability

calls execute with the following arguments, all files on the
server hosting the execution of this package could be deleted.
execute({"flags": "$(rm -rf /)"}, function(){}, function(){}) The
attacker can execute any arbitrary command by setting the
flags attribute appropriately.

Dynamic Taint Analysis. Dynamic taint analysis, or taint
tracking, is a runtime mechanism for tracking information
flows from sources, e.g., the inputs to package entry points
to sensitive sinks, e.g., the exec function (c.f. [40]). Certain
program values, such as the above-mentioned sources, are
labeled as tainted and the labels on these values are then prop-
agated by program operations. For example, params in Figure 1
is labeled as tainted and is used in an assignment and concate-
nation operation on line 7 then cmd becomes tainted. Dynamic
information flow analysis has been particularly effective for
analyzing code-injection vulnerabilities, such as ACE and
ACI, in JavaScript (c.f. [5]).

We call a discovered flow from an attacker-controllable
source to sensitive sink a potential flow, because it is not yet
known if the flow can be exploited. Once a flow has been
determined to be exploitable—meaning that an input can be
provided to the package that results in an exploit payload suc-
cessfully executing—we call the flow a confirmed flow. Not
every confirmed (exploitable) flow is a vulnerability, which
is a flow that does not correspond to a legitimate behavior of
a package’s API, e.g., executing arbitrary commands.

NODEMEDIC: Provenance graphs and naive synthesis.
NODEMEDIC-FINE builds on top of NODEMEDIC [8],
which is a dynamic taint analysis tool for identifying Arbitrary
Code Execution (ACE) [11] and Arbitrary Command Injec-
tion (ACI) [10] in Node.js packages. To analyze a package,
NODEMEDIC automatically generates a simple driver pro-
gram that imports the package and executes its public APIs
with fixed values for all arguments, that are marked as tainted

2

(1) call:exec
'rsync -[object Obje

(2) precise:string.concat
'rsync -[object Obje

(3) Untainted
'rsync'

(4) precise:string.concat
' -[object Object]'

(5) Untainted
' -'

(6) object.GetField
{}

(7) call:execute
{ flags: {} }

(8) Tainted
{ flags: {} }

(9) call:__jalangi_set_taint__
{ flags: {} }

(10) Untainted
{ flags: {} }

(11) Untainted
'flags'

(12) object.GetField
{}

(13) call:execute
{ flags: {} }

(14) Tainted
{ flags: {} }

(15) call:__jalangi_set_taint__
{ flags: {} }

(16) Untainted
{ flags: {} }

(17) Untainted
'flags'

Figure 2: Example provenance graph for code in Figure 1

(potentially attacker-controllable). NODEMEDIC instruments
the code to implement the dynamic taint analysis. The instru-
mented code is run with Node.js and outputs potential flows
from tainted inputs to sinks as a provenance graph.

The provenance graph captures a runtime trace of how
tainted data flowed through the program. An example prove-
nance graph for the code in Figure 1 is shown in Figure 2. The
leaf nodes are program inputs or constants. The remaining
nodes are operations that data passes through, terminating at
a sink. For example, node (14) taints the input parameter; a
concatenation is shown in node (4); and node (1) is the sink
call. The flow of tainted data is indicated by red edges.

Using the provenance graph, NODEMEDIC synthesizes a
candidate exploit, generates a driver to call the package with
the exploit, and executes it. It then checks for the desired
effect of the exploit (i.e., creation of the file success). However,
NODEMEDIC was not able to synthesize an exploit for this
example, even though it reports a potential flow.

3 Motivation and Overview

Automatically generating exploits for packages like the one
shown in Section 2 is challenging. We identify key challenges
in improving the completeness of ACE and ACI vulnerabil-
ity detection and exploit synthesis based on dynamic taint
tracking and present an overview of NODEMEDIC-FINE to
explain how we address these challenges.

Challenges. Three key challenges we face (also noted in prior
work [8]) are: 1) Dynamic analysis of Node.js packages needs
inputs, that satisfy specific type and structure requirements.
NODEMEDIC only executes the package using a single fixed
constant input. For example, to call the entry point shown

in Figure 1 and trigger a flow, the driver has to call it with
an object with the flags attribute. 2) Confirming flows also
requires synthesized inputs to have a particular type and struc-
ture, such as the example input object containing an exploit
payload in its flags field. 3) The confirmation methodology
needs to generate string payloads that have semantically valid
completions of JavaScript strings for ACE vulnerabilities.
These challenges are not specific to NODEMEDIC; they ap-
ply broadly to confirming vulnerabilities found by JavaScript
dynamic taint analysis tools [7, 26, 34].

Overview. NODEMEDIC-FINE implements novel fuzzing
and synthesis methodologies to address these challenges. To
address the first challenge, we introduce a coverage-guided,
type-aware fuzzer that can generate inputs with diverse types
and object structure. To address the second challenge, we
enhance the exploit synthesis methodology to generate inputs
with types and structure inferred from provenance graphs,
and to support JavaScript coercion and common string op-
erations. For the last challenge, we incorporate an enumera-
tor component in the synthesis methodology that produces
syntactically-valid completions of JavaScript strings.

The overview of NODEMEDIC-FINE is shown in Figure 3.
NODEMEDIC-FINE takes as input Node.js packages. To
analyze the package and call its entry points, NODEMEDIC-
FINE generates a driver that imports the instrumented pack-
age and calls its public entry points with inputs. The driver
generation is straightforward, except that the inputs used are
from the fuzzer. The fuzzer is coverage-guided and can gen-
erate inputs from a variety of types and dynamically recon-
struct attributes that are expected from object inputs (more
details in Section 4.1). NODEMEDIC-FINE directly utilizes
NODEMEDIC’s dynamic taint provenance analysis to produce
a provenance graph when a potential flow is discovered. Any
Node.js dynamic taint tracking tool would be usable, as long
as it generates a provenance graph.

The next few components of NODEMEDIC-FINE synthe-
sizes an exploit, taking the provenance graph as input. To
generate exploits of the correct type, NODEMEDIC-FINE
includes a type inference component, which infers the types
of the input, including its inner structure, based on operations
performed on the input present in the provenance graph. For
instance, upon seeing the getField operation in node (6), we
can infer the input is an object with a field flags; seeing the
concat operation in node (4) we can infer the flag field’s value
is of type string (more details in Section 4.3). To aid gener-
ation of exploits for ACE vulnerabilities, we implement an
enumerator component, which takes the prefix of the exploit
to be generated as input, and returns a list of templates, each
of which is a syntactically valid JavaScript expression that
starts with the prefix and will execute the intended statement
(more details in Section 4.5). The type inference algorithm
and Enumerator create an SMT formula encoding the above
mentioned constraints. By solving for symbolic variables rep-

3

Fuzzer

NODEMEDIC-FINE

Dynamic taint analysis engine

Provenance

graph

constraints

Candidate

exploit

SMT Solver (Z3)

Enumerator

Type and structure

inference

Synthesis engine core

Custom SMT model

Node.js

package

Figure 3: NODEMEDIC-FINE end-to-end pipeline for vulnerability detection and exploit generation

resenting package API input, Z3 [12] generates a satisfying
instantiation of these variables, forming a candidate exploit.

4 NODEMEDIC-FINE Design

This section explains NODEMEDIC-FINE’s novel fuzzing
and synthesis components.

4.1 Fuzzing Types and Structure

To explore more execution paths, we implement a coverage-
guided, type- and object-structure–aware fuzzer for Node.js
packages, which iteratively refines its internal weights for
generating inputs of different types based on coverage infor-
mation. The fuzzer can refine the structure of the generated
objects based on field access information from the runtime.

Fuzzing loop. The fuzzer’s interactions with the rest of
NODEMEDIC-FINE is shown in Figure 4. The fuzzer takes
an input specification for the entry point parameter being
analyzed. The fuzzer generates inputs based on the specifica-
tion and sends them to be executed by NODEMEDIC-FINE.1

NODEMEDIC-FINE returns coverage information and the
attributes accessed via instrumented field access operations
(getField [42]). The fuzzer takes this feedback and refines
its input specification to start the next iteration of fuzzing,
continuing until a time budget is exhausted.

Input specification. Inputs are specified hierarchically by
the following elements: a list of types that the input can have
(types); a list of number of samples taken for each type, where
the ith element specifies how many times the fuzzer sampled
an input of the ith type in the types list (sampled); a list of
coverage data for inputs of each type; where the ith element
represents the accumulated number of lines of code triggered
by generated inputs of the ith type in the types list (reward);
and a recursive specification of the structure of the final input
(structure). The “Specification” boxes in Figure 4 are example
specifications. The first box states that the first type in the list
is an “Object”, not yet sampled by the fuzzer. It sets the initial
reward for Objects to 200 and defines its structure as empty.

1The fuzzer utilizes the npm package Hasard [38] for generating random
values according to a rigorous specification of the characteristics of the value.

Fuzzer
Specification 1 Specification 2

{
 ”types”: [“Object”, …],
 “sampled”: [1, …],
 “reward”: [317, …],
 “structure”: {

”command”: ...
 }
}

{
 ”types”: [“Object”, …],
 “sampled”: [0, …],
 “reward”: [200, …],
 “structure”: {
 }
}

 NodeMedic-FINE Runtime

Feedback 1

Coverage: 117
Accessed: [“command”]

Input 2
{

”command”: “random”
}

Input 1

 { }

Driver Instrumented
package

Figure 4: Fuzzer loop

Weight adjustment. Our fuzzer is coverage-guided: the
amount of code executed using the previous inputs influences
future input generation. The reward and sampled data in the spec-
ification contribute to the adjustable weight used for tuning
input generation.

We provide an initial weight for each type, based on the
observation that some types are more commonly expected by
Node.js package APIs than others. We aim to choose weights
that increase the likelihood of generating inputs that trigger a
potential flow. We performed a small scale analysis on 12k
packages sampled from npm to identify the frequency of
each JavaScript type that resulted in a potential flow. In this
experiment, we started fuzzing with equal weight for all types
and observe the reported potential flows. We found that object
inputs are most likely to result in potential flows, followed by
strings, booleans, and functions. We seed the reward field in
initial input specifications to reflect the above observation.

These weights are dynamically adjusted after each fuzzing
iteration based on coverage. The fuzzer only knows how effec-
tive each type is at improving coverage after it has tried them
all. There is often a tradeoff between continuing to explore in-
puts of types that have already shown promise in the past and
trying out inputs of types that have not been explored much.
This is known as the exploration-exploitation dilemma [31].

When deciding which new type to explore, a natural way
to model this decision is using a Poisson process [53]. In our

4

case, we consider each type t, with λt =
rewardt

sampledt
. We consider

the execution of a block of code to be the independent event
Each type distribution estimates the expected number of lines
of code that we will execute, if we choose this type.2 We
sample from each type distribution and choose the type with
the largest sample value. Using this approach, it is more likely
for input types that were effective in the past to have higher
sample values and therefore to be chosen more frequently,
while still making it possible for types that were not effective
in the past to still be chosen eventually.

Object reconstruction. The initial specification of objects
contains no attributes. For the fuzzer to generate objects with
useful structure, we extended NODEMEDIC’s taint instrumen-
tation to keep track of the field names whenever a getField
operation is performed. This information is given as feedback
to the fuzzer. At the end of each iteration, the input specifi-
cation is updated to include newly discovered attributes. For
example, in Figure 4 “Feedback 1” from the first run of the
fuzzer states that it covers 117 lines of new code and access
the field "command". Then, the input specification is updated to
“Specification 2”: with new coverage data and more detailed
object structure. The fuzzer then generates a new input with
the field "command" set to a random input.

4.2 Handling Trivially-Exploitable Flows
Many packages with potential flows could be exploited
using the following polyglot input strings, designed
to handle multiple scenarios simultaneously: For ACI:
$(touch /tmp/success) #" || touch /tmp/success #’ || touch /tmp/success

Accounts for single quotes and double quotes contexts, or
when certain shell metacharacters are sanitized. For ACE:
global.CTF();//" +global.CTF();//’ +global.CTF();// ${global.CTF()}.
Executes global.CTF even if the payload is injected in double
or single quotes or backticks.

For ACI flows, the shell expansion meta characters
$(touch /tmp/success) already handle most contexts. The pay-
load may be injected inside a shell string with double quotes
or backticks and it will still execute, even if some parts of
the command are not syntactically valid. Therefore, the ACI
polyglot is typically not needed.

For ACE, carefully crafting the payload is crucial because
the final argument to ACE sinks needs to be syntactically
valid JavaScript; otherwise none of payload statements will
execute. Unlike the ACI polyglot, the ACE polyglot is highly
effective in confirming flows (Sections 5.4-5.5).

4.3 Type and Structure Inference
Inputs generated by the fuzzer may have varied types and
structures (Section 4.1). However, there is no guarantee that

2In reality, executed blocks of code are not independent due to control
flow dependencies, but we assumed so for simplicity. Also, Hasard only
supports sampling integers from Poisson distribution.

Figure 5: Provenance graph for toy example API.

these randomly generated inputs have the correct type or
structure to exploit the vulnerability. For example, an input
generated by the fuzzer that results in the flow in Figure 2 is
{"flags": {"RF<bWD c^G;wmo?S": ""}}, but an input that exploits the
flow must have structure {"flags": "payload"}.

To address this, we extend the synthesis methodology to
infer required input types and structures and integrate this
information into the process of constraint-based exploit syn-
thesis. The key idea is that the provenance graph is a record
of all operations performed at runtime on the package API
input, and thus it can be used to infer the types and structure
of the input. For example, if the package API performs a
substr operation on its input, then we can infer that the type
of the input is string. Similarly, if the package performs a
field access operation on its input, then we can infer that the
input is a JavaScript datatype that supports field access, e.g.,
objects, arrays, maps, sets, etc.

We first present a motivating example and give an overview
of the technique (Section 4.3.1). Then we describe the type
inference algorithm (Section 4.3.2) and the structure infer-
ence algorithm (Section 4.3.3). Finally, we describe how the
inferred information is integrated into the exploit synthesis
process (Section 4.3.4).

4.3.1 Motivating Example and Overview

The grep package API is shown in Figure 6a. The query argu-
ment has the type object with a field filename, which is a string
that has the operation substr applied to it. The resulting string
is passed to the exec sink, leading to an ACI vulnerability.
Figure 5 shows the provenance graph generated by our tool.

The inference algorithm traverses the provenance graph
(Figure 5) from the leaf nodes towards the root and extracts in-
formation about the type and structure of attacker-controllable
inputs, refining its abstract value (c.f.,Figure 6b); a data struc-

5

1 function grep(query) {
2 exec("grep " + query["filename"].substr(5, 25));
3 }

(a) Toy example package API.

1 { "id": "",
2 "types": ["Bot"],
3 "structure": {} }

(b) Initial abstract value for toy example API.

1 { "id": "",
2 "types": ["Object"],
3 "structure": {
4 "filename": {
5 "id": "47341750",
6 "types": ["String"],
7 "structure": {} }}}

(c) Inferred abstract value for toy example API.

1 (declare -fun SymbolicField_47341750 () String)
2 (assert (str.contains
3 (str.++ "grep "
4 (str.substr SymbolicField_47341750 5 25))
5 " $(touch success);#"))
6 (check -sat)
7 (get-model)

(d) SMT constraints for the toy example API with node IDs.

1 { "id": "",
2 "types": ["Bot"],
3 "structure": {
4 "filename": {
5 "id": "47341750",
6 "types": ["String"],
7 "structure": {},
8 "concrete": "BCDEA$(touch success);#G"
9 }}}

(e) Concretized abstract value for the toy example API.

Figure 6: Generating an exploit for a toy example.

ture that stores a set of possible types for the input–its types–as
well an abstract structure that recursively stores abstract val-
ues for discovered properties (fields) of the input. The initial
abstract value is shown in Figure 6b; "Bot" represents any
JavaScript type. The presence of the GetField operation allows
the inference to refine the type-set of the query input from
{Bottom}, representing any JavaScript type, to {Object, Array,
Map, Set}. Furthermore, the algorithm examines the field that
was accessed in the GetField operation, "filename", and deter-
mines that it is not numeric. This further refines the type-set
to {Object, Map}. The algorithm also notes that the string
value "filename" is part of the structure of the input. Finally, the
algorithm reaches the root of the provenance graph, the sink
exec. At this point, the algorithm has inferred that the query

input is an object with a field "filename" of string type. This
is sufficient information for the synthesis algorithm to gen-
erate SMT constraints as shown in Figure 6d and eventually
generate a successful exploit payload.

4.3.2 Inferring Types and Structure

Using the provenance graph and the fact that JavaScript im-
poses restrictions on what operations may be performed on
a value of a particular type, we can infer types of values ap-
pearing in the graph.

Type lattice for type inference. We use a type lattice to repre-
sent knowledge of provenance graph value types. In Figure 7,
we present a simplified type lattice graph for the JavaScript
types object, string, and array. A type lattice is a partially or-
dered set where each subset is a collection of JavaScript types.
Subsets are related to each other via a partial order relation-
ship: type compatibility, which also represent refinement of
our knowledge of a value’s type. If we are at {String,Array}
because we have observed an operation that can be performed
on both strings and arrays, then we see an operation that
can only be performed on strings, we can then refine our

{	Bottom	}

{	Object,	String,	Array}

{	Object,	Array} {	String,	Array}

{	Object	} {	String	} {	Array	}

{	Top	}

{	slice,	…	}

{	join,	…	}

{	assign,	…	}

{	substr,	…	}

{	keys,	…	}

{	join,	…	}{	assign,	…	}

Figure 7: Type lattice for object, string, and array types. Only
a subset of edge labels are included for readability.

knowledge of the type to {String}. We make two additional
refinements: 1) we generalize operations to fields to include
type-specific properties, e.g., the length property of strings and
arrays; 2) we label the edges of the type lattice graph with the
list of operations that, if seen, would cause us to transition
from one subset to another.

We have also developed an algorithm to automatically de-
rive the type lattice for JavaScript types. This type lattice
computation is done once for a JavaScript language version.
Details can be found in Appendix B.1.

Traverse paths from the provenance graph. We extract a
set of paths in the provenance graph from the package input
nodes to the sink node. There is only one runtime path from
each input to the sink; execution stops when a sink is reached.
We define an algorithm (pseudo code in Appendix B.2) for
inferring package API input types, taking as input the type
lattice and the extracted paths. Our type for the leaf starts as
Bottom. Along the way, we extract the field f of each vis-
ited node. We then consult the lattice and possibly perform a
transition, depending on f , to a new refined type set. Transi-
tions are labeled with either the field (for built-in operations),
a wildcard (for other operations), or an exclamation point

6

(for sink operations). We then continue until we reach the
sink node, at which point we have obtained the most refined
inference possible for the type of the input.

For example, the inferred type starts as Bot (Bottom); shown
in Figure 6b. When we reach the access (GetField) of the field
"filename" (node 5 in Figure 5) the type of the input is refined
to Object. After the GetField operation, the type is reset to Bot

because we are now inferring the type of the "filename" field.
Once we reach the substr field (node 4 in Figure 5) the in-
ferred type transitions to String, which is the correctly refined
type of the "filename" field.

4.3.3 Inferring Structure

In addition to inferring that the query input is an object, we
need to reconstruct its fields. This requires analyzing the field
access operation in the provenance graph and reconstructing
the fields and integrating their inferred types.

Inferring structure along provenance graph paths. The
algorithm for inferring structure walks the provenance graph
path, checking for field access operations (e.g., GetField).
When a field access operation is found, the field’s name is
extracted, and then the remaining path is recursively analyzed.
The result of the recursive call will be a new abstract value;
in Figure 6c, this is the object assigned to the "filename" field.

Abstract values are only computed for tainted leaf nodes of
the provenance graph (the attacker-controllable inputs). The
example contains a single such input, query, as a result there
is just one abstract value in the result. Currently, we do not
support inference with multiple values (Section 5.4).

For the toy example, as shown in Figure 6c the structure of
the query input is inferred to be an object with a field "filename",
which is a string (which is structureless). This is a sufficient
structure for the query input, given the behavior of the package
API captured in the provenance graph.

4.3.4 Integration with Synthesized Payloads

Next, we describe how inferred types and structure are used
in the constraint-based exploit synthesis process. We first aug-
ment the provenance graph with type information for each
node, which we extract from the inferred abstract value (Sec-
tion 4.3.3). If the operation is a field access, we extract the
inferred types of the field from the abstract value and add
it as an annotation to the node. We label such a node as a
SymbolicField, to be used in the SMT formula.

The synthesis algorithm will then generate SMT constraints
from the augmented provenance graph. Solutions to the re-
sulting formula are a set of strings corresponding to parts of
the package inputs. As a final step, we insert these strings
into the inferred abstract value to generate the final exploit.
We only need to match the ID of the provenance node and
the ID of abstract values, which are preserved across all the
operations. The generated SMT constraints for our example

is shown in Figure 6d. The SMT constants are prefixed with
the provenance node ID, e.g., SymbolicField_47341750, which cor-
responds to the ID 47341750 of the "filename" field of the query

as shown in Figure 6c. We solve the SMT statement with Z3
as described in Section 4.4 and process the output of Z3 into
{’47341750’: ’BCDEA$(touch success);#G’}. Then, we can insert the
solved strings into the abstract value as the field "concrete".
The resulting abstract value is in Figure 6e.

Finally, we concretize an abstract value by traversing the
structure and replacing the abstract value with concrete ones
from the SMT solutions. The final concretized result for our
example is: {’filename’: ’BCDEA$(touch success);#G’}.

4.4 Fine-grained Constraints

NODEMEDIC’s synthesis algorithm derives SMT constraints
from provenance graphs, which are then solved to generate
candidate exploits. However, it does not handle the seman-
tics of common JavaScript string operations (e.g., negative in-
dices in string.slice), nor coercion operations (e.g., "1" + 2), nor
potential sanitization of the exploit payload. NODEMEDIC-
FINE extends NODEMEDIC’s synthesis algorithm with 1) ad-
ditional models for JavaScript operations; 2) robust handling
of JavaScript coercion; and 3) variations of exploit payload.

SMT models for JavaScript operations. SMT models for
JavaScript operations are necessary to generate the SMT con-
straints to be solved for generating exploit payloads. For ex-
ample, NODEMEDIC models string concatenation as follows.

1 def generate_operation_tree(tree: OperationTreeNode):
2 return z3.Concat(*[
3 _generate(child) for child in tree.children])

When we encounter a concatenation operation in the op-
eration tree, we call the Z3 concatenation operation with
rewritten ASTs of the subtrees. We extended this approach
to handle additional common JavaScript string operations
such as string.slice and string.replace found in our dataset (Sec-
tion 5.1). The complexity of modeling these operations in-
cludes: 1) matching JavaScript semantics to Z3 operations
and 2) storing additional constraints in a context to generate
the final SMT formula. Appendix B.3 shows two models to
illustrate these complexities.

Handling implicit coercion. JavaScript will implicitly co-
erce non-string values to strings in a number of cases, such as
when an array is joined into a string, or when any non-string
value is concatenated with a string. Without taking into ac-
count when values are converted to strings, the SMT formulas
will be ill-formed, limiting our capability to generate exploits.
The cause of this limitation is that NODEMEDIC does not
have access to native (i.e., within the JavaScript engine) oper-
ations performed on values and thus does not include coercion
operations in the provenance graph. NODEMEDIC-FINE im-
proves upon NODEMEDIC by 1) transforming the provenance

7

1 module.exports = {
2 evaluate: function(expr) {
3 var out = new Function(
4 "return 2*(" + expr + ")");
5 return out();
6 }
7 };

Figure 8: Vulnerable entry point of a synthetic example with
an arbitrary code execution vulnerability

graph by inserting coercion operations explicitly; and 2) by
providing SMT models for these coercion operations.

First, we traverse the graph and insert coercion nodes where
we identify an implicit coercion would happen in JavaScript.
For example, if we see a string.concat operation with a non-
string argument, we insert a coercion node to convert the
non-string argument to a string. This must be handled on
a case-by-case basis. Second, we define SMT models for
these coercion operations. For example, we model the coer-
cion of a number to a string using the z3 IntToStr operation.
Appendix B.4 explains the algorithm in detail.

Variations of exploit payloads. To generate exploits, we need
to find a compound string: spre+ spay+ ssuf, where spre com-
pletes what comes before it, spay delivers the exploit payload,
and ssuf causes whatever comes after it not be executed. Se-
lections of spre, spay, and ssuf are dictated by the vulnerability
type and sourced from known exploits. NODEMEDIC has one
fixed string for each. NODEMEDIC-FINE instead allows the
synthesis algorithm to pick from a set of variations, increas-
ing its capability to generate valid exploits. Concretely, we
encode in SMT constraints a disjunction of variations. Details
are in Appendix B.4.1.

4.5 Generating Valid JavaScript Payloads

Synthesizing syntactically valid JavaScript payloads is a key
challenge for confirming potential ACE flows. As seen in
Section 4.2, ACI flows can be consistently confirmed by using
payloads with shell meta-characters that escape most contexts.
This does not apply for ACE flows; the final argument to the
sink needs to not only be valid JavaScript, but also execute
the intended payload. Figure 8 shows a synthetic example
that demonstrates these challenges.

This example shows an entry point where the expected func-
tionality is to return a number corresponding to the double
of the result of evaluating the given argument as a mathe-
matical expression. If we import the package and use it like
so: evaluate(’1+1’) it returns 4. Notice that the expression to
evaluate is given as a string which is interpreted as JavaScript.

A naive solution is evaluate(’1);console.log("VULN FOUND") //’),
with 1); being the breakout sequence to finish the current
expression. However, the exploit fails. The problem is that
once JavaScript executes the instruction return 2*(1); it ig-
nores what comes next, as the return statement just fin-

ishes the execution of the current function. A success-
ful exploit injects the payload before closing the current
expression, like: evaluate(’console.log("VULN FOUND")) //’). Note
that the final argument to the Function sink in this case is
return 2*(console.log("VULN FOUND")) //). We close the parenthe-
sis context right after the payload and before the // comment
start, otherwise an error would be thrown complaining that
the expression is syntactically invalid, as the open parenthesis
would never be closed.

Enumerator. We now describe how Enumerator constructs
an objective payload, which is the final string that will be
passed to eval or the Function constructor. It differs from prior
work like NODEMEDIC in its ability to construct a final pay-
load that obeys all syntactic constraints and executes the in-
tended statement. The Enumerator is given a prefix, such as
return "(and outputs a number of alternative payload tem-
plates, each with a placeholder for a statement to execute.

A payload template is a list where each element can have
one of the following types:
Literal: A constant string, usually with syntactic connectors.
Payload: The placeholder for the payload.
Identifier: This can be replaced with a valid variable name. It
is important that the final JavaScript expression does not use
undefined variables.
FreshIdentifier: This can be replaced with a valid variable
name that was not used before, as some JavaScript expressions
have to use fresh variables.
GetField: This can be replaced with any valid attribute.

An example payload template that the Enumerator
outputs for the package and prefix described above is:
[Literal("return 2*("), Payload(), Literal(")"]. Next we discuss
how payload templates are generated.

Graph representation. The Enumerator internally uses a
graph representation for JavaScript syntax. Each node is a
symbol representing a JavaScript syntactic category, such as
variable names and elements for the template described above.
The root is a node that represents the start of a new JavaScript
expression. Collecting all symbols on a path from a node
to the root yields a valid payload template, which together
with the prefix string can be instantiated to a valid JavaScript
program. Thus the transition between node A and B is only
allowed if going to node B allows for a valid completion. To
use the graph, the Enumerator starts from the beginning of
the prefix, and finds the node matching the first symbol of the
prefix, then follows the transition based on the next symbol.
When the last symbol of the prefix is reached, the Enumerator
uses the graph edges to generate the template. It performs
a reachability analysis and outputs all paths that can reach
the root of the graph from the current nodes. Each path is a
valid template to complete the prefix. We omitted details of
how Enumerator keeps track of additional context to ensure
the validity of the generate payload, in addition to the graph.
These details can be found in Appendix Figure 28.

8

Connection with SMT synthesis. To leverage NODEMEDIC-
FINE’s ability to handle sanitization measures and other con-
straints in the package, each element in a chosen template
payload is turned into a symbolic variable by the synthesis
algorithm (except Literals which are constant strings). Our
synthesis infrastructure proceeds to synthesize an SMT state-
ment where the argument to the sink is constrained to be equal
to the concatenation of each element in a payload template
where each variable has its own constraints, e.g., FreshIdenti-
fier elements are constrained to be unique.

Approach feasibility. JavaScript is a context-sensitive lan-
guage, so it is impossible to represent all syntax in this way
[32]. Still, we found that the current primitives supported
by the Enumerator are sufficient to complete most prefixes
that we found in the wild under 0.1 seconds with negligible
memory consumption.

5 Evaluation

We evaluate the effectiveness of NODEMEDIC-FINE in de-
tecting and automatically confirming ACI and ACE flows:
RQ1: How effective is type-aware fuzzing (Section 4.1) at
uncovering potential ACE, ACI flows?
RQ2: Does inference (Section 4.3) improve synthesis for con-
firming ACI flows?
RQ3: Is synthesis with the Enumerator (Section 4.5) effective
for confirming ACE flows?

We also evaluate the ability of NODEMEDIC-FINE to dis-
cover previously unidentified vulnerabilities in npm packages,
and compare it with prior Node.js dynamic taint analyses.

5.1 Experiment Setup and Dataset

Experiment setup. Experiments were deployed via Docker
containers on two Ubuntu 20.04 VMs, each with 12 cores
and 32GB of RAM. Packages were analyzed in parallel; one
container per instance of NODEMEDIC-FINE analyzing a
package. We repeated this process with several variants of
NODEMEDIC-FINE configured with key components dis-
abled to evaluate the effect of each component. The workflow
for analyzing each package is as follows: First, a driver is
generated. The fuzzer (Section 4.1) is used in the driver de-
pending on the variant. Next, the driver executes until it either
times out, crashes, or finds a potential flow. The timeout for
fuzzing is set to 2 minutes (Appendix A.1). If a flow is found,
a second driver (no fuzzer) that only calls APIs that trigger
the flow is generated and executed to collect a minimal prove-
nance graph. We test the polyglots that are effective for simple
cases (Section 4.2). Finally, if the polyglot is unsuccessful,
we then run our synthesis algorithm (Section 4.3-4.5).

Dataset. We gathered all packages from npm with at least
1 weekly download; 1,732,536 packages in total. From this

Table 1: Overall evaluation results and comparison to prior
Node.js dynamic taint analysis tools.

N
O

D
E

M
E

D
IC

-F
IN

E
N

O
D

E
M

E
D

IC
-M

C
N

O
D

E
M

E
D

IC
[8

]
Ic

hn
ea

[2
4]

A
FF

O
G

AT
O

[1
7]

Packages 33011 33011 10000 22 21

Potential
Total 1966 752 155 15 17
ACI 1673 690 133 9 -

ACE 293 62 22 6 -

Auto-conf.
Total 622 246 108 - -
ACI 567 234 102 - -

ACE 55 12 6 - -

set, we analyzed all 33,011 packages that contained calls to
sinks NODEMEDIC supports (Section 2). We describe the
gathering process in detail in Appendix A. Package sizes
range from 56 bytes to 236 MB, download counts are between
1 and 171,158,063 weekly downloads, and the number of
dependencies is between 1 and 1366.

Evaluation baseline. We include NODEMEDIC-MC, which
is NODEMEDIC [8] enhanced with additional SMT models
and support for implicit coercion (Section 4.4), as the baseline
for comparisons with NODEMEDIC-FINE.

5.2 Overall Evaluation Results

The overall evaluation results broken down by type of flow
(Section 2) is shown in Table 1. We compare the number
of potential and automatically confirmed flows found by
NODEMEDIC-FINE to those found by NODEMEDIC [8],
and by related Node.js dynamic analyses [17, 24]. To our
knowledge, the evaluation performed for NODEMEDIC-FINE
is the largest-scale dynamic taint analysis of ACI and ACE
flows in the Node.js ecosystem to date. In 33,011 packages,
NODEMEDIC-FINE finds 1966 potential flows, among which
1673 are ACI flows and 293 are ACE flows. NODEMEDIC-
FINE automatically confirms 622 flows, among which 567
are ACI flows and 55 are ACE flows. Among all confirmed
flows found by NODEMEDIC-FINE, 1 ACE and 21 ACI are
already-disclosed vulnerabilities. To date, we have been as-
signed 1 ACI CVE (Section 5.6).

In 33,011 Node.js packages, NODEMEDIC-FINE uncov-
ers 1966 potential flows and confirms 622 of them auto-
matically; 2.6x potential and 2.5x auto-confirmed flows
compared to NODEMEDIC-MC.

9

Table 2: Potential flows found by the fuzzer with varied con-
figurations. Extra and missing flows are relative to the ones
found by NODEMEDIC-FINE.

Condition Extra Missing Total
NODEMEDIC-FINE - - 1966

– ObjRecon 37 74 1929

– Types 50 195 1821

NODEMEDIC-MC 0 1214 752

5.3 RQ1: Fuzzer Performance

We evaluate the fuzzer’s impact on identifying potential flows
(Table 2). The first column indicates the fuzzer’s configura-
tion: default (NODEMEDIC-FINE) also referred to as the
full fuzzer; disabling object reconstruction (– ObjRecon); dis-
abling type-aware fuzzing (only generating strings) (– Types);
compared to NODEMEDIC-MC, which does not use fuzzing.
Additional and missing potential flows compared to the full
fuzzer are in the second and third column, respectively.

The full fuzzer performs much better than no fuzzer, result-
ing in 1214 additional flows. Type-awareness in the fuzzer
is responsible for finding 195 extra potential flows compared
to a fuzzer that only generates strings. Disabling type-aware
fuzzing yields 50 extra flows, 25 of which can be found by
the full fuzzer with longer timeout. The other 25 were lost in
the second phase due to a serialization issue (Section 6).

Object reconstruction contributed to finding 74 extra po-
tential flows. These were cases where the packages required
inputs to be objects having a certain structure, similar to our
example in Section 2. Disabling object reconstruction also
allows the fuzzer to find 37 extra flows. The limited time bud-
get for fuzzing causes this; 26 of these 37 flows can be found
by the full fuzzer with longer timeouts while the remaining
11 cases crash due to out of memory. Sometimes coverage-
guidance that object reconstruction uses leads the fuzzer away
from generating inputs that trigger potential flows. For exam-
ple, one package prints an error and does not call the sink if
a certain attribute is present in the user input. The object re-
construction will generate these attributes as coverage would
increase; however, the absence of those attributes is needed
for triggering the potential flow. The fuzzer found a flow in
this package when object reconstruction is disabled.

Result 1: Type- and object-structure aware fuzzing uncov-
ers 1966 potential flows; 2.6x the flows of NODEMEDIC-
MC. Object reconstruction is necessary to find 74 flows.
Generating diverse types yields 195 more flows compared
to generating only strings.

Table 3: Impact of inference of types and structure on ACI
confirmed flows. Fuzzer with object reconstruction enabled
except for NODEMEDIC-MC. Extra and missing flows are
relative to NODEMEDIC-FINE.

Condition Extra Missing Total
NODEMEDIC-FINE - - 567

– Inference 0 21 546

NODEMEDIC-MC +Fuzzer 0 21 546

NODEMEDIC-MC 0 333 234

5.4 RQ2: Inference Performance
We present the evaluation results on the impact of type and
structure inference and discuss its limitations.

Impact of types and structure inference. Table 3 reports
extra, missing, and total counts of automatically confirmed
ACI flows across four conditions: NODEMEDIC-FINE: in-
ference of types and structure enabled; – Inference: inference
of types and structure disabled; NODEMEDIC-MC +Fuzzer:
the baseline condition with the fuzzer; and NODEMEDIC-
MC. Disabling inference means that only string values are
synthesized and synthesized values are used directly as inputs.

Disabling inference of types and structure results in 21 ACI
flows missed, all of which are because a structured object is
expected as input by the package API and only a field of the
object is used in the call to the sink. The confirmed ACI flows
missed by NODEMEDIC-FINE without inference of types
and structure are the same flows missed by NODEMEDIC-MC
+Fuzzer. This indicates that for ACI flows, inference of types
and structure is the sole additional factor that contributes to
the increase in confirmed ACI flows. A case study of a real
package mirroring our example in Section 4.3 can be found in
the Appendix C.1. Inference of types and structure increases
the complexity of the SMT formulae and synthesized package
input, but does not introduce a performance bottleneck on
average (Appendix C.3).

Result 2a: Inference of types and structure leads to the
automatic confirmation of 21 additional ACI flows. These
flows correspond to packages whose inputs require specific
types (2 on average) and structures (1.4 fields on average).

Limitations of extended synthesis for ACI. We manually
triaged the top 25 packages, ranked by weekly downloads,
where our infrastructure found a potential flow but failed to
generate an exploit. Out of the 25, we found 11 exploitable
ACI flows. The remaining 14 packages were false positives.

Of the 11 exploitable flows, synthesis failed for 6 due to the
lack of support for synthesizing multiple (two) inputs to a sin-
gle sink. All had the spawn sink and accepted a command string
and an options object, both of which need to be synthesized.
It is only possible to exploit the sink if the shell flag is set to

10

Table 4: Confirmed ACE flows found while enabling or dis-
abling several components of synthesis. Fuzzer with object
reconstruction was enabled for all of these. Extra and missing
flows are relative to the ones found by NODEMEDIC-FINE.

Condition Extra Missing Total
NODEMEDIC-FINE - - 55

– Enumerator 0 7 48

– Polyglot 0 19 36

NODEMEDIC-MC +Fuzzer 3 7 51

NODEMEDIC-MC 1 39 17

true in the options object. One package required synthesis to
complete a nontrivial string context to bypass shell expansion
sanitization; this could be solved by extending the Enumerator
methodology (Section 4.5) to apply to ACI flows. The other
four cases are due to incomplete handling of corner cases in
our implementation. A detailed breakdown and description
can be found in Appendix C.4.

Result 2b: Inference of types and structure suffers from
two fundamental limitations: (1) inability to synthesize mul-
tiple inputs to a single sink, and (2) inability to synthesize
completions of shell strings.

5.5 RQ3: Enumerator Performance

We report on the effectiveness of our ACE polyglot and the
Enumerator in confirming ACE flows. Table 4 summarizes the
impact of disabling several NODEMEDIC-FINE components
individually in the confirmation of ACE flows. We report the
number of extra, missing and total counts of automatically
confirmed ACE flows across five conditions: NODEMEDIC-
FINE: uses polyglot and Enumerator; – Enumerator: uses
polyglot; – Polyglot: uses Enumerator; NODEMEDIC-MC
+Fuzzer and NODEMEDIC-MC.

ACE polyglot. Our ACE polyglot (Section 4.2) is more effec-
tive than using a simpler exploit global.CTF();//, increasing the
number of confirmed flows from 36 to 55. The improvements
are in situations where the payload is injected inside a string
value and insufficient sanitization measures allow an attacker
to escape that context. We omit discussion of the ACI polyglot
as it did not significantly change the number of confirmed
flows (see Appendix C.2 for details).

Impact of completing prefixes. The Enumerator contributes
to 7 confirmed ACE flows. All 7 cases required a complex pay-
load to be constructed, involving the insertion of the payload
in the right place, escaping the necessary contexts at the right
time and, in some cases, an extra suffix concatenated after the
prefix and our payload. An example is given in Appendix B.5.

The Enumerator came up with a valid prefix completion for

101 unique packages total. We manually inspected 8 out of
the 94 packages that we could not automatically exploit. Four
were not exploitable. Of the remaining 4, 2 had such intricate
constraints that Z3 timed out, as they involved solving for in-
puts that passed through a JavaScript parser called jsep before
reaching the sink or exploiting a stack machine; 1 package
required a model for the slice operation where the length is
symbolic to successfully construct the SMT statement for Z3;
and 1 package required a call to the function returned by the
entry point with an object argument. In all these cases, the
Enumerator synthesized a valid completion but there were
additional challenges that NODEMEDIC-FINE would need
to overcome to create a working exploit.

Result 3a: The Enumerator helped NODEMEDIC-FINE
complete the majority of real world prefixes that we found
in ACE flows, increasing the number of total confirmed
ACE flows by 15%.

Limitations of the Enumerator. The Enumerator failed to
complete the prefix for 98 packages with ACE flows. This was
most commonly due to the need to complete JavaScript code
that contained primitives not supported by our Enumerator.
Lacking support for loops, nested objects, boolean expressions
and the += operator caused 51 out of these 98 failures. There
were 4 cases where the prefix could not be completed even by
a perfect Enumerator, because our synthesis algorithm does
not handle multiple inputs (Section C.4). The argument to the
sink was a combination of constant strings from the package
and several attacker controlled inputs. When the prefix was
passed from the synthesis algorithm to the Enumerator, it
was already impossible to be completed. The remaining 43
cases needed a diverse set of JavaScript primitives to be sup-
ported by the Enumerator, including but not limited to class
definitions, try/catch statements and generator functions.

Anomalous cases. NODEMEDIC-MC +Fuzzer, having
no inference, confirmed 3 extra flows for all of which
NODEMEDIC-FINE’s inference generated a malformed SMT
formula (Appendix C.4). The fuzzer was needed to find the
potential flow in two of them, but the third one was found by
NODEMEDIC-MC too, which resulted in its 1 extra flow.

5.6 Previously Unidentified Vulnerabilities
We report on NODEMEDIC-FINE’s true and false positive
rates of identifying true vulnerabilities. A vulnerable flow is
an exploitable, truly illegitimate behavior according to the
package functionality.

We sample 112 flows automatically confirmed to be ex-
ploitable by NODEMEDIC-FINE and 30 flows from the most
popular packages where a potential flow was identified but not
automatically confirmed, and we manually examine whether
they are vulnerable. Results are summarized in Table 5. The
number for the true positives in the parenthesis are previously
unreported new vulnerabilities.

11

Table 5: True and false positive rates for both confirmed flows
and potential flows NODEMEDIC-FINE fails to confirm.

Confirmed Un-Confirmed
Sink Type TP FP TP FP

ACI 63 (49 new) 40 1 (1 new) 14
ACE 6 (6 new) 3 4 (3 new) 11

In all, 69 out of the 112 flows are truly vulnerable. Two
of the false positives are in packages that warn users not to
pass unsanitized inputs to vulnerable entry points. Two other
packages were vulnerable, but deprecated. The remaining
cases (39) were packages that exposed a sink directly or the
vulnerable entry point was intended for arbitrary commands
execution. 3 packages had real vulnerabilities in a different
entry point, which NODEMEDIC-FINE did not explore.3

Most of the vulnerabilities are due to a lack of sanitization.
Two have inadequate sanitization, which is bypassed by in-
puts generated by NODEMEDIC-FINE. We were assigned
1 CVE [1]. 7 vulnerabilities in packages with >3K weekly
downloads were submitted to Snyk, by whom the developers
are being contacted. We are in the process of responsibly
disclosing the remaining true positives.

We failed to synthesize an exploit for the true ACI vulner-
ability due to a serialization issue (Section 6). Among the
4 ACE vulnerabilities, 1 needs a more sophisticated exploit
driver with multiple interactions with the API to exploit the
flow; 1 has complex SMT constraints and Z3 outputs unknown;
and 2 packages needed the Enumerator to support class defi-
nitions and passing object arguments in function calls.

The ACI false positives were discussed in Section 5.4.
For ACE false positives, 1 was due to overtainting; 5 had
proper sanitization; 2 packages were deprecated; and 1 pack-
age called the function constructor but the resulting function
was never used. In the remaining 2 packages the inputs to the
package API are a boolean or a number which can not contain
a command or code to be injected in the sink.

6 Limitations and Future Work

In this section we discuss limitations of our analysis and
future work to improve NODEMEDIC-FINE.

Missing information from instrumentation-based analy-
sis. The inference methodology is limited by the underlying
instrumentation-based dynamic analysis [8, 41] because it
relies on the provenance graph, constructed by the underly-
ing analysis. Imprecise or incomplete information typically
result from uninstrumented code, which can appear in native
operations not implemented in JavaScript or functions im-
precisely analyzed by the underlying analysis for scalability

3This was because NODEMEDIC-FINE stops at the first potential flow it
finds, which in these cases was not the ideal flow to exploit

concerns. Leveraging information from static analysis could
further improve NODEMEDIC-FINE.

SMT models of JavaScript operations. An inherent lim-
itation of constraint-based synthesis is its dependence on
bespoke SMT models for JavaScript operations, which are
time-consuming and error-prone to create due to quirks in
the JavaScript language semantics. For instance, JavaScript’s
implicit coercion must be added to the SMT models on a
per-operation basis because these coercions happen within
the JavaScript engine and not visible to the instrumentation-
based analysis. A related limitation, shared by prior work
that applies SMT-solving techniques towards JavaScript anal-
ysis [14, 29, 39], is that the SMT solver may fail to find a
solution within reasonable time limit. Regular expression
operations are known to be challenging to solve [29].

Multi-input synthesis. The inference methodology works
poorly when more than one tainted inputs are given to the
package API due to the following two limitations of the cur-
rent infrastructure. First, the dynamic taint analysis infras-
tructure does not distinguish between multiple kinds of taint;
thus, tainted paths from different inputs are indistinguishable.
Second, the inference does not handle merging of abstract
values from multiple tainted paths. As future work, we will
include support for multiple kinds of taint by modifying the
underlying taint map and prorogation. We will also extend the
inference to distinguish abstract values from different inputs
and only merge those from the same input.

Shell string completion. To handle all cases (e.g., including
sanitization) associated with synthesizing ACI shell code pay-
loads that complete a shell string prefix or suffix, we would
need a methodology similar to the Enumerator for ACE.

More complex drivers. NODEMEDIC-FINE does not gener-
ate sophisticated drivers needed for confirm flows where an
exploit is only triggered if sequences of package API calls are
performed, or handlers or external interactions (e.g., with the
network, a database, or the file system) are executed. Prior
client and server-side JavaScript taint analysis work has en-
countered similar limitations [17, 24, 26, 34, 35]. Beyond
improving driver generation, one could analyze instead, pack-
ages that have simpler driver requirements and calls entry
points of those packages that require complex drivers.

Multiple flows in the same package. Currently,
NODEMEDIC-FINE stops after finding the first flow
for each package. This will cause the analysis to miss
vulnerabilities in a package if the package has multiple
flows and the first one flow is a false positive. This is not
a fundamental limitation of NODEMEDIC-FINE; we can
implement an iterative pipeline to analyze all flows.

Serialization of inputs. Once an input that causes a vulnera-
ble flow is found, we need to serialize it so that we can use it
later to confirm the flow. We implemented basic serialization

12

for most JavaScript builtin types, but it is incomplete. Serial-
izing JavaScript objects is known to be difficult, as a perfect
implementation needs to handle a variety of edge cases like
self referential objects. Bugs in our serialization of payload
caused a few failures in confirming flows. However, this not
a fundamental limitation in our approach. A more robust
serialization is under development.

7 Related Work

NODEMEDIC-FINE uses NODEMEDIC’s underlying dy-
namic taint analysis engine to identify potential flows and to
output important runtime information used for synthesizing
proof-of-concept exploits. In the domain of detecting code-
injection vulnerabilities in Node.js packages, others tools have
used similar dynamic taint tracking techniques [17, 24, 41],
while others used static approaches [23, 25, 27, 28, 30, 37, 43,
44, 48]. The synthesis algorithm depends on the output from
the dynamic taint analysis, which can be obtained by other
tools in the same category [17, 24, 41]. Thus, NODEMEDIC-
FINE’s synthesis methodology is generally applicable and
can be implemented for these tools as well.

The dynamic taint tracking is not a contribution of
NODEMEDIC-FINE, so we focus on closely related work
in fuzzing and synthesis in the context of JavaScript.

General-purpose fuzzers adapted for Node.js. Fuzzing
tools like AFL [52] have been adapted for Node.js fuzzing [3].
These general-purpose tools predominantly generate byte se-
quences or strings, lacking intrinsic knowledge of JavaScript’s
rich type system. While effective in many scenarios, searching
the string space only is not sufficient to uncover a significant
number of vulnerabilities. NODEMEDIC-FINE’s fuzzer is
type- and structure-aware and can generate inputs of a variety
of types and with complex structure, like objects with specific
attributes that have to be themselves objects.

JavaScript-specific fuzzers. Some approaches for input gen-
eration rely on package tests or even tests from its dependents
to improve coverage in Node.js packages [47]. However,
these tests do not always exist. JsFuzz [22] attempts to create
coverage-guided JavaScript-specific fuzzing tools by facili-
tating the generation of inputs more suitable for JavaScript
environments. However, their approach still heavily leans
on string-based input generation and a manual creation of
a fuzz target. This may not effectively explore the breadth
of JavaScript’s type system, which includes objects, arrays
and function types. We observed through manual triage of the
found potential flows that there is a considerable number of
cases of vulnerable entry points that expect a function as one
of the arguments. These would never be found fully automati-
cally by state of the art fuzzers without knowing beforehand
that one of the generated sequence of bytes would have to be
transformed or replaced into a function.

SMT-based JavaScript exploration. While fuzzing helped
NODEMEDIC-FINE to explore more execution paths of a
JavaScript program, another commonly used method for pro-
gram exploration is symbolic execution [40]. Several works
perform symbolic execution for JavaScript [29, 39, 50] but
the technique’s limited scalability [6] conflicts with our goal
of performing a mass scale analysis on npm packages.

Synthesis. Several works use the JavaScript grammar to
generate syntactically valid code [19, 20, 49] for fuzzing
JavaScript interpreters. In comparison, our synthesis tech-
nique works at a finer granularity of syntactic constructions
using SMT constraints: rather than generating numerous code
chunks that are valid syntactically and semantically, but are
arbitrary in their content, we need to synthesize specific se-
quences that bypasses manipulation and delivers the payload.

Most prior work on JavaScript exploit synthesis targets
cross-site scripting vulnerabilities [7, 15, 16, 26, 35]. They
parse the AST of the statement reaching the sink to construct
an exploit [7, 26, 35]. While feasible for webpages because
global input sources (e.g., URL parameters) are accessed near
the sink; it does not work for Node.js packages, where inputs
are local and are often transformed before reaching the sink.

Several works use SMT solvers to synthesize exploits [4,
36, 46]. In the domain of JavaScript synthesis, PMForce [46]
synthesizes ACE exploits for the postMessage API’s event ob-
ject. PMForce gathers and uses path constraints to fill
exploit templates used for event.data. Like the underlying
NODEMEDIC [8], Our analysis also uses templates, but these
encode ACE or ACI-specific breakouts, and in the case of
ACE are produced by the syntactic analysis of the Enumer-
ator. Moreover, the provenance graph encodes constraints
on operations (not path constraints) that solve for structured
inputs and ensure the exploit payload reaches the sink.

Closer to our approach, but applied to PHP, is the work of
NAVEX [4], which uses a constraint-based approach to gen-
erate exploits. NAVEX is similar in that it uses constraints to
select exploit payloads, but unlike our work, it does so by de-
tecting uses of sanitization that would filter out certain attacks
in an attack dictionary. NAVEX is also different from our
approach in that it does not use dynamic provenance informa-
tion, rather it uses path constraints to model vulnerable paths
in a PHP application; it leverages Z3 to solve for inputs that
jointly satisfy path constraints and constraints on the input to
contain acceptable strings from the attack dictionary.

8 Conclusion

We implemented NODEMEDIC-FINE an end-to-end analy-
sis infrastructure for automatic detection and confirmation
of ACI and ACE flows in Node.js packages. We applied
NODEMEDIC-FINE to analysing popular packages with calls
to sinks. NODEMEDIC-FINE automatically confirmed 680
exploitable flows. NODEMEDIC-FINE’s fuzzer component

13

is more effective than prior work at finding potential flows.
Our type inference algorithm and the Enumerator are shown
to be capable of automatically confirming flows that were
previously considered challenging for automated tools.

References

[1] Anonymized. CVE-2024-21488.

[2] Npm passes the 1 millionth package milestone!
What can we learn?, 2021. http://tinyurl.com/
npm-1-millionth.

[3] AFLFuzzJS. afl-fuzz-js: A JavaScript Port of the Amer-
ican Fuzzy Lop Fuzzer, Year. Software available from
URL.

[4] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and
V. N. Venkatakrishnan. NAVEX: precise and scalable
exploit generation for dynamic web applications. In
Proceedings of the 27th USENIX Conference on Security
Symposium, SEC’18, 2018.

[5] Esben Andreasen, Liang Gong, Anders Møller, Michael
Pradel, Marija Selakovic, Koushik Sen, and Cristian-
Alexandru Staicu. A Survey of Dynamic Analysis and
Test Generation for JavaScript. ACM Computing Sur-
veys, 2017.

[6] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia,
Camil Demetrescu, and Irene Finocchi. A survey of sym-
bolic execution techniques. ACM Computing Surveys
(CSUR), 51(3):1–39, 2018.

[7] Souphiane Bensalim, David Klein, Thomas Barber, and
Martin Johns. Talking about my generation: Targeted
dom-based xss exploit generation using dynamic data
flow analysis. In Proceedings of the 14th European
Workshop on Systems Security, 2021.

[8] Darion Cassel, Wai Tuck Wong, and Limin Jia.
NodeMedic: End-to-end analysis of node.js vulnerabil-
ities with provenance graphs. In 2023 IEEE 8th Euro-
pean Symposium on Security and Privacy (EuroS&P),
2023.

[9] CERT. The CERT guide to coordinated vulnera-
bility disclosure, 2023. https://vuls.cert.org/
confluence/display/CVD.

[10] The MITRE Corporation. CWE - CWE-77: Improper
Neutralization of Special Elements used in a Command
(’Command Injection’) (4.3), 2020–. https://cwe.
mitre.org/data/definitions/77.html.

[11] The MITRE Corporation. CWE - CWE-94: Im-
proper Control of Generation of Code (’Code Injec-
tion’) (4.3), 2020–. https://cwe.mitre.org/data/
definitions/94.html.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An ef-
ficient smt solver. In Proceedings of the 14th Inter-
national Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[13] Ruian Duan, Omar Alrawi, Ranjita Pai Kasturi, Ryan El-
der, Brendan Saltaformaggio, and Wenke Lee. Towards
measuring supply chain attacks on package managers
for interpreted languages. In 28th Annual Network and
Distributed System Security Symposium, NDSS, 2021.

[14] José Fragoso Santos, Petar Maksimović, Gabriela Sam-
paio, and Philippa Gardner. JaVerT 2.0: Compositional
symbolic execution for JavaScript. Proceedings of the
ACM on Programming Languages, 2019.

[15] Yaw Frempong., Yates Snyder., Erfan Al-Hossami.,
Meera Sridhar., and Samira Shaikh. Hijax: Human in-
tent javascript xss generator. In Proceedings of the 18th
International Conference on Security and Cryptography
- SECRYPT,, 2021.

[16] Behrad Garmany, Martin Stoffel, Robert Gawlik, Philipp
Koppe, Tim Blazytko, and Thorsten Holz. Towards
automated generation of exploitation primitives for web
browsers. In Proceedings of the 34th Annual Computer
Security Applications Conference, 2018.

[17] François Gauthier, Behnaz Hassanshahi, and Alexander
Jordan. AFFOGATO: Runtime detection of injection
attacks for Node.js. In Companion Proceedings for the
ISSTA/ECOOP 2018 Workshops, 2018.

[18] Liang Gong. Dynamic Analysis for JavaScript. PhD the-
sis, EECS Department, University of California, Berke-
ley, 2018.

[19] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha.
Codealchemist: Semantics-aware code generation to
find vulnerabilities in javascript engines. In Network
and Distributed System Security, 2019.

[20] Christian Holler, Kim Herzig, and Andreas Zeller.
Fuzzing with code fragments. In Presented as part of the
21st USENIX Security Symposium (USENIX Security
12), 2012.

[21] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav
Shacham. An empirical study of privacy-violating in-
formation flows in JavaScript web applications. In Pro-
ceedings of the 17th ACM Conference on Computer and
Communications Security, 2010.

14

http://tinyurl.com/npm-1-millionth
http://tinyurl.com/npm-1-millionth
https://vuls.cert.org/confluence/display/CVD
https://vuls.cert.org/confluence/display/CVD
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/94.html

[22] JSFuzz. Jsfuzz. GitHub repository, 2020. Available at:
https://github.com/fuzzitdev/jsfuzz.

[23] Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo,
Jianwei Hou, V. N. Venkatakrishnan, and Yinzhi Cao.
Scaling JavaScript abstract interpretation to detect and
exploit node.js taint-style vulnerability. In IEEE Sympo-
sium on Security and Privacy, 2023.

[24] R. Karim, F. Tip, A. Sochurkova, and K. Sen. Platform-
Independent Dynamic Taint Analysis for JavaScript.
IEEE Transactions on Software Engineering, 2018.

[25] Maryna Kluban, Mohammad Mannan, and Amr Youssef.
On detecting and measuring exploitable JavaScript func-
tions in real-world applications. ACM Transactions on
Privacy and Security, 2024.

[26] Sebastian Lekies, Ben Stock, and Martin Johns. 25 mil-
lion flows later: Large-scale detection of DOM-based
XSS. In Proceedings of the 2013 ACM SIGSAC Confer-
ence on Computer & Communications Security, 2013.

[27] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao.
Detecting Node.Js Prototype Pollution Vulnerabilities
via Object Lookup Analysis. 2021.

[28] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao.
Mining node.js vulnerabilities via object dependence
graph and query. In 31st USENIX Security Symposium
(USENIX Security 22), 2022.

[29] Blake Loring, Duncan Mitchell, and Johannes Kinder.
ExpoSE: Practical symbolic execution of standalone
JavaScript. In SPIN 2017, 2017.

[30] Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static
analysis of event-driven Node.js JavaScript applications.
ACM SIGPLAN Notices, 2015.

[31] Valentin JM Manes, HyungSeok Han, Choongwoo Han,
Sang Kil Cha, Manuel Egele, Edward J Schwartz, and
Maverick Woo. Fuzzing: Art, science, and engineering.
arXiv preprint arXiv:1812.00140, 2018.

[32] Carlos Martín-Vide, Victor Mitrana, and Gheorghe
Păun. Formal languages and applications, volume 148.
springer, 2013.

[33] Phil Muncaster. Open Source Supply
Chain Attacks Surge 430%, 2020. https:
//www.infosecurity-magazine.com/news/
open-source-supply-chain-attacks/.

[34] Inian Parameshwaran, Enrico Budianto, Shweta Shinde,
Hung Dang, Atul Sadhu, and Prateek Saxena. Auto-
patching DOM-based XSS at scale. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015.

[35] Inian Parameshwaran, Enrico Budianto, Shweta Shinde,
Hung Dang, Atul Sadhu, and Prateek Saxena. DexterJS:
Robust testing platform for DOM-based XSS vulnera-
bilities. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, 2015.

[36] Sunnyeo Park, Daejun Kim, Suman Jana, and Sooel
Son. {FUGIO}: Automatic exploit generation for {PHP}
object injection vulnerabilities. In 31st USENIX Security
Symposium (USENIX Security 22), 2022.

[37] Nishant Patnaik and Sarathi Sahoo. Javascript static
security analysis made easy with JSPrime. In Blackhat
USA, 2013.

[38] piercus. Hasard. https://www.npmjs.com/package/
hasard, 2020. NPM package version 1.6.1.

[39] José Fragoso Santos, Petar Maksimović, Théotime Gro-
hens, Julian Dolby, and Philippa Gardner. Symbolic
Execution for JavaScript. In Proceedings of the 20th
International Symposium on Principles and Practice of
Declarative Programming, 2018.

[40] Edward J Schwartz, Thanassis Avgerinos, and David
Brumley. All you ever wanted to know about dynamic
taint analysis and forward symbolic execution (but might
have been afraid to ask). In 2010 IEEE symposium on
Security and privacy, 2010.

[41] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and
Simon Gibbs. Jalangi: A selective record-replay and
dynamic analysis framework for JavaScript. In Proceed-
ings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, 2013.

[42] Koushik Sen and Manu Sridharan. Jalangi2, 2014–.
https://github.com/Samsung/jalangi2.

[43] C.-A. Staicu, M. T. Torp, M. Schäfer, A. Møller, and
M. Pradel. Extracting Taint Specifications for JavaScript
Libraries. In 2020 IEEE/ACM 42nd International Con-
ference on Software Engineering (ICSE), 2020.

[44] Cristian-Alexandru Staicu, M. Pradel, and B. Livshits.
SYNODE: Understanding and Automatically Prevent-
ing Injection Attacks on NODE.JS. In NDSS, 2018.

[45] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Bal-
liu, Michael Pradel, and Andrei Sabelfeld. An Empirical
Study of Information Flows in Real-World JavaScript.
In Proceedings of the 14th ACM SIGSAC Workshop
on Programming Languages and Analysis for Security,
2019.

[46] Marius Steffens and Ben Stock. PMForce: Systemati-
cally analyzing postMessage handlers at scale. In ACM
Conference on Computer and Communications Security,
2020.

15

https://github.com/fuzzitdev/jsfuzz
https://www.infosecurity-magazine.com/news/open-source-supply-chain-attacks/
https://www.infosecurity-magazine.com/news/open-source-supply-chain-attacks/
https://www.infosecurity-magazine.com/news/open-source-supply-chain-attacks/
https://www.npmjs.com/package/hasard
https://www.npmjs.com/package/hasard
https://github.com/Samsung/jalangi2

[47] Haiyang Sun, Andrea Rosà, Daniele Bonetta, and Wal-
ter Binder. Automatically assessing and extending code
coverage for npm packages. In 2021 IEEE/ACM In-
ternational Conference on Automation of Software Test
(AST), pages 40–49, 2021.

[48] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Srid-
haran, and Omri Weisman. TAJ: Effective taint analysis
of web applications. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, 2009.

[49] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and
Herbert Bos. Ifuzzer: An evolutionary interpreter fuzzer
using genetic programming. In European Symposium
on Research in Computer Security, 2016.

[50] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang
Yang, Hong Hu, Guofei Gu, and Wenke Lee. Abusing
hidden properties to attack the node.js ecosystem. In
30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 2021.

[51] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy,
C. Maddila, and L. Williams. What are weak links in
the npm supply chain? In 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), 2022.

[52] Michal Zalewski. American Fuzzy Lop
(AFL), 2024. Software available from
http://lcamtuf.coredump.cx/afl/.

[53] Mingyi Zhao and Peng Liu. Empirical analysis and
modeling of black-box mutational fuzzing. In Engi-
neering Secure Software and Systems: 8th International
Symposium, ESSoS 2016, London, UK, April 6–8, 2016.
Proceedings 8, pages 173–189. Springer, 2016.

[54] Markus Zimmermann, Cristian-Alexandru Staicu, Cam
Tenny, and Michael Pradel. Small World with High
Risks: A Study of Security Threats in the npm Ecosys-
tem. In Proceedings of the 28th USENIX Security Sym-
posium (USENIX Security 19), 2019.

A Gathering of Evaluation Dataset

Gathering consisted of collecting a list of packages and saving
each and their dependencies locally using Verdaccio. This is
done to save up bandwidth, as inevitably some packages will
have the same dependencies as others we can get their code
locally. From the (>2M) packages in npm currently, we gath-
ered those that have at least 1 weekly download (1,732,536
packages). In Figure 9 we show the number of packages that
get filtered out at each stage of the gathering pipeline, until

we are left with 33011 usable packages, our finished dataset.
We show all steps of our pipeline in the same order as they
run. A package stops at the setupPackage if it can not be
downloaded. The filterByMain stage filters out packages that
can not be imported because they do not define a main file. A
package stops in the filterBrowserAPIs stage when it is not
intended for client-side usage as it is the case for the ones that
require a browser. The filterSinks stage discards packages
that do not contain calls to ACE or ACI sinks visible to static
analysis. Note that we also check if any of the dependencies
have calls to sinks. We proceed to install the dependencies
in the setupDependencies stage, which may error if we fail
to download or install one of the dependencies. In the getEn-
tryPoints stage we discard packages that do not have any
public entry points defined. Finally, we gather useful metrics
for characterizing the dataset in the annotateNoInstrument
stage. The last stage is the runJalangiBabel where we instru-
ment the package code using Jalangi, all remaining packages
get through this stage and that constitutes the final dataset of
packages that we are going to analyse. We store the package
and dependencies, together with its instrumented counterpart
for all popular packages with calls to sinks.

Figure 9: How many packages were filtered out, by stage.

A.1 Analysis Timeout

We have a hard timeout of 2 minutes for fuzzing. Figure
15 shows that after 30 seconds we start to have diminishing
returns on the number of total potential flows found. We would
not expect to find a large enough number of new potential
flows if we increased the timeout further, and 2 minutes is
already quick enough that we can run our full pipeline against
all packages that we found to contain calls to sinks over a day.

16

B Additional Synthesis Methodology Details

B.1 Type Lattice Derivation

While the type lattice presented in Figure 7 is relatively sim-
ple, an actual implementation of such a type lattice for the
full gamut of JavaScript types is complex. JavaScript includes
a set of seven primitive types as well as a large set of built-in
types. Each of these types has a large set of fields–operations
that can be performed on them, and properties they support.
For example, the string type has 43 operations that can be
performed on it (substr, slice, replace, etc.) This makes deriva-
tion of the type lattice time-consuming and error-prone to
construct manually. Thus, we develop an algorithm to au-
tomatically derive the type lattice for JavaScript types. The
algorithm does this dynamically in three steps: 1) enumer-
ation of the built-in JavaScript types’ fields; 2) attempted
access of all fields; 3) derivation of unique fields; 4) lattice
construction.

The approach for the first step is depicted in Figure 16. The
algorithm iterates over each of the built-in JavaScript types
as listed above, and for each type it enumerates the fields that
are supported by the type. This is done by first enumerating
the fields of the type itself, and then enumerating the fields
of the type’s prototype and constructor. The fields are then
added to a list of fields for the type.

In step 1, the algorithm derived a list of all fields that are
valid for particular types. However, this list is not complete.
For example, the built-in Map type does not have a field toString,
but it does support accessing the toString property because it is
common to almost all JavaScript types. To address this, in step
2 we take the previous union of the lists of fields generated
in step 1 (allFields), and attempt to access each field on each
type. If the field is accessible, then we add it to the list of
fields for that type. This is shown in Figure 17.

Another operation that is not captured in step 1 getting
and setting of non-built-in properties. As expected, primitive
types such as string and number do not support extension, e.g.,
"foo"["a"] will always result in an error, while object["a"] will
not result in an error if "a" is defined on object. To capture this,
as shown in Figure 18, we check if the type supports extension
using the Object.isExtensible built-in JavaScript function.

Finally, in step 4, the algorithm constructs the type lat-
tice (Figure 19). The algorithm iterates over sorted valid set,
which is a list of all unique type sets and performs pair-wise
comparison between these sets. For each pair it determines if
there is a transition to be added. If there is a transition, then
the algorithm adds an edge to the type lattice graph. These
edges are labeled with the marker, Field<${set}>, which we can
look-up in our previously derived list of fields to determine
which fields cause the transition. In adding transitions, the
algorithm considers two cases: 1) the transition is to a new
type set; 2) the transition is to the same type set. In the first
case, which happens when the second set is in a partial order

relation with the first, the algorithm adds an edge from the
first type set to the second type set indicating that a refinement
is possible. In the second case, where there was overlap but
not a partial order. The algorithm adds a self-loop to the first
type set indicating no refinement. There are a few additions
to the type lattice that are not shown in the pseudocode, such
as adding transitions to Top and Bottom. Once all transitions
have been added, the algorithm returns the type lattice. This
type lattice computation is done once for a JavaScript lan-
guage version. It is then is usable for analysis of any package
using that JavaScript version.

B.2 Provenance Graph Path Traversal
With paths through the provenance graph and the type lattice,
we define an algorithm for inferring package API input types.
We show truncated pseudocode for the algorithm in Figure 20.

Starting from the leaf node of each provenance graph path,
we perform a traversal to the sink node (the root of the tree).
Our type for the leaf starts as Bottom. Along the way, we ex-
tract the field f of each visited node (denoted node.field in the
psuedocode). We then consult the lattice and possibly perform
a transition, depending on f . Transitions are labeled with ei-
ther the field (for built-in operations), a wildcard (for other
operations), or an exclamation point (for sink operations). We
then continue until we reach the sink node, at which point we
have the obtained the most refined inference possible for the
type of the input.

B.3 Additional SMT Models
We extended NODEMEDIC to handle additional common
JavaScript string operations found in our dataset (Section 5.1).
We describe below the models for two representative models:
1) string.slice, which illustrates the complexity of matching
JavaScript semantics to Z3 operations, and 2) string.replace

which illustrates models that require storing additional con-
straints in a context used to generate the final SMT formula.

The semantics of string.slice are that the substring of the
first argument starting at the index of the second argument
and ending at the index of the third argument is returned.
This corresponds to the semantics of the Z3 Extract operation.
However, JavaScript also allows negative indices, which are
interpreted as indexing from the end of the string. Thus, we
must model this behavior in our SMT formula (Figure 22).
We do this by first generating the ASTs of the first and third
arguments, and then checking if the second argument is neg-
ative. If it is, we add the length of the first argument to the
second argument before generating the AST of the second
argument. We can then call the Z3 Extract after performing
this transformation.

The model for the JavaScript string.replace operation is
shown in Figure 23. The semantics of this operation are that
the first argument is searched for the second argument, and if

17

it is found, it is replaced with the third argument. Since we are
concerned with exploit generation, we are only interested in
what is being removed by the replace operation. The character
or substrings removed represent sequences that our exploit
payload must not contain, or they could be stripped from the
exploit payload, rendering it potentially unsuccessful. Thus,
we model the string.replace operation by first generating the
AST of the first argument, and then adding a constraint to
our SMT context that the first argument does not contain the
second argument, e.g., the substring that is being replaced. We
then return the AST of the first argument, which represents
the string that remains after the replace operation.

B.4 JavaScript Implicit Coercion Support

High-level selections of our implementation of modeling im-
plicit coercions are shown in Figure 24. The function _coerce

is called when a coercion node is encountered in the operation
tree. This function first determines the type that the coercion
is to, and then calls a corresponding helper function to gener-
ate the AST of the coercion. The helper function generates the
AST of the coercion based on type. For example, the helper
function _generate_coerce_string is called when the coercion is
to a string. This function first checks if the coercion is from a
number, boolean, or array, and then generates the AST of the
coercion accordingly. In some cases this is straightforward;
for example, if the coercion is from a number, the AST of
the coercion is generated by simply calling the Z3 IntToStr

method on the AST of the child node. The case of coercion of
a boolean value to a string is also straightforward, but has no
direct Z3 equivalent. Thus, we must manually add a constraint
to the SMT context that the AST of the coerced value is either
the string "true" or the string "false".

Finally, the case of coercion of an array to a string is more
complex. This is because the semantics of this coercion is that
the elements of the array are joined into a string. In JavaScript,
arrays can have any type of value, e.g., a mix of objects, strings
and even subarrays. Naively representing coercion of each of
these array elements would result in a blowup in formula size
and solving time, potentially causing the solver to timeout
within our time limit. Instead, we leverage the observation that
in order to exploit an ACE or ACI vulnerability, the array must
simply contain a single string that is attacker-controllable; if
the array contains a correctly-constructed payload, it doesn’t
matter what the other elements of the array are. Thus, we
model the coercion of an array to a string by simply selecting
the first element of the array and assuming it is a string, as
shown in the last branch in Figure 24. This is an unsound, but
is sufficient for our purposes; if the array does not contain
a string, then generation of a successful payload was never
possible. As a result of this simplifying assumption, the model
for the JavaScript array.join(delimiter) operation is straightfor-
ward, as shown in Figure 25. When generating the operation
tree we insert a node representing a coercion of the array to

a string. The array.join operation itself can then be modeled
just as a concatenation of the coerced array (a string) to the
delimiter string.

B.4.1 Exploit Payload Variations in SMT

Figure 26 illustrates generating varied ACI payloads. The
function construct_aci_payloads enumerates a list of potential
ACI payloads using different prefixes, payloads, and suffixes.
Each of these are a possible exploit payload that the SMT
solver can pick, given the other constraints in the SMT context.
In the function generate_sink, we check if the SMT context is
empty; if it is not, then we generate the above list of possible
ACI payloads (if it is empty there are no constraints and any
one of the payloads will work). This list of payloads is then
converted into a list of Z3 constraints, each of which is a call
to the Z3 Contains method, which checks if the AST of the
child node contains the payload. These constraints are then
combined into a single constraint using the Z3 Or method.

The SMT formula solving for an exploit payload generated
by this procedure for the toy example is shown in Figure 27.
As can be seen, the SMT formula contains a disjunction of
constraints, each of which is a call to the Z3 Contains method,
which checks if the AST of the child node contains a particular
payload that was enumerated. Combined with other SMT
constraints that may forbid particular characters, this will
allow the solver to still find a satisfying assignment for the
exploit payload.

B.5 Enumerator Applied to a Real Package
To illustrate the Enumerator performing in a real world sce-
nario, we show in Figure 29 an example of a prefix adapted
from one of the 7 cases that the Enumerator successfully com-
pleted, together with the final synthesized exploit. Note the
closing brackets after the main payload, without which the
exploit would be a syntactically invalid statement and would
not execute.

C Additional Evaluation Details

C.1 Inference ACI Case Study
Next, we present a case study sourced from our evaluation
to illustrate the benefits of inference of types and structure.
The case study is a package, b****@0**, that takes a list of
source input files and allows one to build CoffeScript files and
output them to a directory. Our taint analysis detected a poten-
tially vulnerable flow in the package’s process function, which
accepts a node argument whose two fields, out and files, are
passed unsanitized to the ACI sink exec as shown in Figure 30.

Running our inference methodology on the package, we
infer the abstract value shown in Figure 31. We can see that
the out and files fields are inferred to be present on the input,

18

Table 6: Impact of ACI polyglot. Fuzzer with object recon-
struction enabled for all conditions except NODEMEDIC-MC.
Extra and missing flows are relative to NODEMEDIC-FINE.

Condition Extra Missing Total
NODEMEDIC-FINE - - 567

– Polyglot 4 5 566

NODEMEDIC-MC +Fuzzer 0 21 546

NODEMEDIC-MC 0 333 234

which is inferred to be an object. The fields themselves are not
inferred to have any structure, indicating they are some non-
extensible type. They are not specifically inferred to be strings
because the package API does not perform any operations on
them that would require them to be strings. At the same time,
the type string is a valid type for these fields so our synthesis
methodology will treat them as strings.

Running our synthesis methodology on the package, we
generate the SMT formula shown in Figure 32. We can see
that the out and files fields are treated as strings, and the
SMT formula encodes the constraints that the first string
must be a completion of the prefix "coffee -o ", the second
string must be a completion of the prefix " -c ", and the con-
catenation of the symbolic and literal strings must contain
the payload " $(touch success);#". Solving this with Z3, we ob-
tain the satisfying assignments SymbolicField_c0a0f881 = "B" and
SymbolicField_bb7d142f = "$(touch success);#. Matching the assign-
ments to the abstract value, we can derive the candidate ex-
ploit input: {"out": "B", "files": "$(touch success);#"}.

Finally, we construct the exploit driver, which is shown in
Figure 33; we can see that the driver simply constructs the
candidate exploit input (line 2) and passes it to the package
API (line 5). We run the exploit driver and confirm that the
exploit is successful by checking for the presence of the file
success, which is created.

C.2 Effect of ACI Polyglot

In Table 6, we show the impact of the ACI polyglot on
the number of confirmed flows: – Polyglot: instead of us-
ing the ACI polyglot, we use a simple shell expansion
$(touch /tmp/success); We see disabling the polyglot results in 4
extra and 5 missing flows.

Introducing the ACI polyglot did not significantly increase
the number of confirmed flows, indicating that a simple shell
expansion based payload is already powerful enough to cover
most simple ACI cases. The four extra flows are cases where
the package do not accept quotes in the payload, which the
polyglot contains (Section 4.2). These cases could be ad-
dressed by using variations of the polyglot that do not contain
quotes.

Table 7: Characteristics of ACI SMT formulae and synthe-
sized inputs generated by NODEMEDIC-FINE with inference
of types and structure enabled.

Characteristic Measurement

SMT formula size (bytes) 244
SMT symbolic input count 1.2
Z3 solving time (ms) 24.43
Synthesized field count 1.4
Synthesized value depth 1.05
Inferred type count 2

Table 8: Causes of ACI synthesis failure along with the num-
ber of packages that failed due to each cause.

Cause Count

Multi-input synthesis 6

String string completion 1

SMT malformed (missing symbolic input) 2

Infrastructure bug (results processing) 2

Total 11

C.3 Complexity of Synthesis with Inference
To understand the impact of inference of types and structure
on complexity of the SMT formulae and synthesized package
input, in Table 7, we examine relevant characteristics for the
21 flows with inference of types and structure enabled.

The measurements show that results of synthesis produce
package inputs that are not trivial, having typically 1 or 2
distinct required fields of at least 2 different types. However,
the resulting formulae are compact and could be solved in
under a second on average.

C.4 Limitations of ACI Synthesis
We provide additional details on limitations of the synthesis
methodology extended by inference of types and structure for
ACI flows.

Multi-input synthesis. Of the 11 exploitable flows, 6 of those
packages had the spawn sink and accepted both a command
string and an options object that were passed to spawn. Under
these conditions it is possible to exploit the sink if the shell

flag is passed in the options object. However, our synthesis
methodology does not support synthesizing two inputs to a
single sink (e.g., a payload as well as an options argument
with the appropriate flag). Thus, we were unable to synthesize
exploits for these packages.

To illustrate, consider the following example of the package
c****@2**. In Figure 34, we present a code snippet along

19

the exploitable code path of the package. The procedure on
line 1 is called by the package’s entry point with the method to
execute (which receives a reference a function that calls spawn),
as well as a command, arguments, and options that get passed
directly in the method call on line 8. NODEMEDIC-FINE
synthesizes the command $(touch /tmp/success);#, but does not
synthesize an options argument of the form {’shell’: true},
thus causing the exploit payload’s shell metacharacters to not
be executed.

Shell string completion. One package required the use of
methodology similar to JavaScript completion the enumer-
ator employs for ACE flows (Section 4.5). The package
d****@1** calls the exec sink with a command string that
is constructed by concatenating a prefix string with the user
input, dep (line 3 of Figure 35).

The prefix string includes the character ’ (a single quote).
Within a single quote the shell treats all characters as liter-
als, thus preventing evaluation of shell-metacharacters. Our
polyglot exploit includes a single quote, but does not in-
clude a suffix to close the remaining single quote. In other
words, NODEMEDIC-FINE produces the exploit payload:
’ || touch /tmp/success, but the payload ’ || touch /tmp/success ’

is needed. To handle all possible cases (e.g., taking into ac-
count sanitization) associated with synthesizing such a pay-
load, we would need to employ a methodology similar to
Enumerator’s generation of completions for ACE flows.

Infrastructure and synthesis bugs. Finally, we encountered
four cases where a exploit failed to be synthesized due to
bugs in our infrastructure or synthesis implementation. Two
of these cases were due to the generation of a malformed
SMT formula, wherein the formula lacked a symbolic input
to solve for, thus preventing the generation of a payload. The
remaining two cases were due to bugs in processing the results
of synthesis leading to valid synthesized payloads being lost.
In both cases, if the synthesized payload had been used, the
flow would have been automatically confirmed.

Figure 10: Frequency of packages within ranges of download
counts, split into "with sinks", "with potential flows" and "with
confirmed flows"

20

Figure 11: Frequency of packages within ranges of lines of
code counts, split into "with sinks", "with potential flows" and
with "confirmed flows"

Figure 12: Frequency of packages within ranges of package
size, split into "with sinks", "with potential flows" and with
"confirmed flows"

21

Figure 13: Frequency of packages within ranges of tree depth
size, split into "with sinks", "with potential flows" and with
"confirmed flows"

Figure 14: Frequency of packages within ranges of unique
dependendy numbers, split into "with sinks", "with potential
flows" and with "confirmed flows"

22

Figure 15: How many flows would be found (y-axis) if we set
the fuzzing timeout to (x-axis in miliseconds).

1 for (const typeName in types) {
2 const instance = types[typeName];
3 // List of all supported fields
4 let fields = Object.getOwnPropertyNames(instance);
5 try {
6 // Attempt to get the fields of the prototype
7 let protoFields = Object.getOwnPropertyNames(
8 instance.__proto__
9);

10 fields.push(... protoFields);
11 } catch (err) {}
12 try {
13 // Attempt to get the fields of the constructor
14 let constrFields = Object.getOwnPropertyNames(
15 instance.constructor
16);
17 fields.push(... constrFields);
18 } catch (err) {}}

Figure 16: Algorithm step 1: Deriving fields for each type.

1 for (const field of allFields) {
2 for (const typeName in types) {
3 const instance = types[typeName];
4 // Try to see if we can access the field
5 try {
6 let result = instance[field];
7 // If we can, add it to the fields of that type
8 fieldSets.set(typeName ,
9 existingFields.add(field));

10 } catch (err) {}}}

Figure 17: Algorithm step 2: Attempted access of fields.

1 for (const typeName in types) {
2 const instance = types[typeName];
3 try {
4 // Check support for extension
5 if (Object.isExtensible(instance)) {
6 fieldSets.set(typeName ,
7 existingFields.add(’Extension’));
8 }
9 } catch (err) {}}

Figure 18: Algorithm step 3: Checking extensibility.

1 for (const s1 of sortedValidSets) {
2 for (const s2 of sortedValidSets) {
3 // Case 1: Transition to a new type set
4 if (subsetEq(s1, s2)) {
5 lattice[s1][‘Field <${s2}>‘] = s2;
6 // Case 2: Stay at the same type set
7 } else if (intersect(s1, s2).size != 0) {
8 lattice[s1][‘Field <${s2}>‘] = s1;
9 }}}

Figure 19: Algorithm step for constructing the type lattice.

1 tl = TypeLattice()
2 leaf_types: LeafTypes = {}
3 for k, v in provenance_graph_paths_paths:
4 inferred = "Bottom"
5 for node in v[1:]:
6 if isinstance(node.field , BuiltinOperationType):
7 inferred = tl.transition(inferred , node.field)
8 elif isinstance(node.field , OtherOperationType):
9 inferred = tl.transition(inferred , "*")

10 elif isinstance(node.field , SinkOperationType):
11 inferred = tl.transition(inferred , "!")
12 ...
13 leaf_types[k].append(inferred)

Figure 20: Algorithm for inferring types along provenance
graph paths.

1 def generate_operation_tree(tree: OperationTreeNode):
2 return z3.Concat(*[
3 _generate(child) for child in tree.children])

Figure 21: SMT model for string concatenation.

1 def model_js_string_slice(tree: OperationTreeNode):
2 val = _generate(tree.children[0])
3 length = _generate(tree.children[2])
4 if int(str(length)) < 0:
5 length = z3.Length(val) + length
6 return z3.Extract(
7 val, _generate(tree.children[1]), length)

Figure 22: SMT model for the string.slice operation.

1 def model_js_string_replace(tree: OperationTreeNode):
2 _context.append(z3.Not(z3.Contains(
3 _generate(tree.children[0]),
4 _generate(tree.children[1]),
5)))
6 return _generate(tree.children[0])

Figure 23: SMT model for the string.replace operation.

23

1 def _coerce(child: OperationTreeNode):
2 # Ex: Function:*->String; to_type = "String"
3 to_type = get_to_type(child.types)
4 if to_type == "String":
5 return _generate_coerce_string(child , child.types)
6 ...
7 def _generate_coerce_string(
8 child: OperationTreeNode , child_types: List[str]):
9 if "Number" in child_types:

10 return z3.IntToStr(self._generate(child))
11 elif "Boolean" in child_types:
12 val = self._generate(child)
13 self._context.append(
14 z3.Or(
15 val == z3.StringVal("true"),
16 val == z3.StringVal("false")))
17 return val
18 elif "Array" in child_types:
19 return z3.Select(
20 _generate(child),
21 z3.IntVal(0))
22 ...

Figure 24: Partial code for modeling JavaScript implicit coer-
cion

1 def generate_operation_tree (...):
2 if ptree.operation == "join":
3 parents[0] = OperationTreeNode(
4 "implicit", "coerce",
5 [parents[0]],
6 ["Function:*->String"])
7
8 def model_js_array_join(tree: OperationTreeNode):
9 return z3.Concat(

10 _generate(tree.children[0]),
11 _generate(tree.children [1]))

Figure 25: SMT model for the array.join operation.

1 def construct_aci_payloads(self):
2 prefix_list = [" ", "; ", "&& "]
3 payload_list = ["touch success",
4 "$(touch success)", "‘touch success ‘"]
5 suffix_list = [";#"]
6 payloads: List[str] = []
7 for prefix in prefix_list:
8 for payload in payload_list:
9 for suffix in suffix_list:

10 payloads.append(f"{prefix}{payload}{suffix}")
11 return payloads
12
13 def generate_aci_sink(self , tree: OperationTreeNode):
14 sink_input = self._generate(tree.children[0])
15 if self._context != []:
16 return z3.Or(*[
17 z3.Contains(sink_input , payload)
18 for payload in self.construct_exec_payloads ()])

Figure 26: ACI payload variation synthesis.

1 (declare -fun SymbolicField_b3e14a71 () String)
2 (assert (and (or (str.contains
3 (str.++ "grep " SymbolicField_b3e14a71)
4 " touch success;#")
5 (str.contains (str.++ "grep " SymbolicField_b3e14a71)
6 " $(touch success);#")
7 (str.contains (str.++ "grep " SymbolicField_b3e14a71)
8 " ‘touch success ‘;#")
9 (str.contains (str.++ "grep " SymbolicField_b3e14a71)

10 "; touch success;#")
11 (str.contains (str.++ "grep " SymbolicField_b3e14a71)
12 "; $(touch success);#")
13 (str.contains (str.++ "grep " SymbolicField_b3e14a71)
14 "; ‘touch success ‘;#")
15 (str.contains (str.++ "grep " SymbolicField_b3e14a71)
16 "&& touch success;#")
17 (str.contains (str.++ "grep " SymbolicField_b3e14a71)
18 "&& $(touch success);#")
19 (str.contains (str.++ "grep " SymbolicField_b3e14a71)
20 "&& ‘touch success ‘;#"))
21 (not (str.contains SymbolicField_b3e14a71 "$"))))

Figure 27: SMT formula with varied payloads.

Figure 28: A section of the graph representation of JavaScript
syntax used by the Enumerator. Edges have labels C;U where
C is a condition over the current character in the prefix c and
the context ΓC. U is a context update

1 // Code showing the sink call
2 return new Function("x",
3 "with (x) { return " + user_input + " } ")
4 // Prefix
5 with (x) { return
6 // Completion
7 [[<payload >, <literal: ’}’>]]
8 // Exploit
9 global.CTF()} //

Figure 29: Prefix, completion and the final exploit synthesized
for a real world prefix

1 exports.process = function(node , tree , cb) {
2 ...
3 childproc.exec(
4 "coffee -o " + node.out + " -c " + node.files ,
5 function() {
6 e = arguments[0],
7 out = arguments[1], err = arguments[2];
8 return cb(e, out + ’\n’ + err);
9 });

10 ...
11 }

Figure 30: b****@0** code vulnerable to ACI.

24

1 {"id": "",
2 "types": ["Object"],
3 "structure": {
4 "out": {
5 "id": "c0a0f881",
6 "types": ["Bot"],
7 "structure": {},
8 },
9 "files": {

10 "id": "bb7d142f",
11 "types": ["Bot"],
12 "structure": {},
13 }
14 }}

Figure 31: Abstract value inferred for b****@0**.

1 (declare -fun SymbolicField_bb7d142f () String)
2 (declare -fun SymbolicField_c0a0f881 () String)
3 (assert (str.contains (str.++ "coffee -o "
4 SymbolicField_c0a0f881
5 " -c "
6 SymbolicField_bb7d142f)
7 " $(touch success);#"))
8 (check -sat)
9 (get-model)

Figure 32: SMT formula generated for b****@0**.

1 try {
2 var x0 = {"out": "B", "files": "$(touch success);#"};
3 var x1 = undefined;
4 var x2 = undefined;
5 new PUT["process"](x0,x1,x2);
6 } catch (e) { console.log(e); }

Figure 33: Exploit driver for b****@0**.

1 function doSpawn(method , command , args , options) {
2 ...
3 var cpPromise = new ChildProcessPromise();
4 var reject = cpPromise._cpReject;
5 var resolve = cpPromise._cpResolve;
6 var successfulExitCodes = (options
7 && options.successfulExitCodes) || [0];
8 var cp = method(command , args , options);
9 ...

Figure 34: Code snippet from c****@2**.

1 ...
2 return new Promise <string >(resolve => {
3 child_process.exec(‘yarn why ’${dep}’ --json ‘,
4 (err, output) => {

Figure 35: Code snippet from d****@1**.

25

	Introduction
	Background
	Motivation and Overview
	NodeMedic-FINE Design
	Fuzzing Types and Structure
	Handling Trivially-Exploitable Flows
	Type and Structure Inference
	Motivating Example and Overview
	Inferring Types and Structure
	Inferring Structure
	Integration with Synthesized Payloads

	Fine-grained Constraints
	Generating Valid JavaScript Payloads

	Evaluation
	Experiment Setup and Dataset
	Overall Evaluation Results
	RQ1: Fuzzer Performance
	RQ2: Inference Performance
	RQ3: Enumerator Performance
	Previously Unidentified Vulnerabilities

	Limitations and Future Work
	Related Work
	Conclusion
	Gathering of Evaluation Dataset
	Analysis Timeout

	Additional Synthesis Methodology Details
	Type Lattice Derivation
	Provenance Graph Path Traversal
	Additional SMT Models
	JavaScript Implicit Coercion Support
	Exploit Payload Variations in SMT

	Enumerator Applied to a Real Package

	Additional Evaluation Details
	Inference ACI Case Study
	Effect of ACI Polyglot
	Complexity of Synthesis with Inference
	Limitations of ACI Synthesis

